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1. Introduction

There are rich synchronized audio and visual events in
our daily videos. Inside the events, audio scenes are as-
sociated with the corresponding visual objects, meanwhile,
sounding objects can indicate and help to separate their
individual sounds in the audio track. Based on this ob-
servation, in this paper, we propose a cyclic co-learning
(CCoL) paradigm that can jointly learn sounding object vi-
sual grounding and visually indicated audio separation in a
unified framework. Concretely, we locate sounding objects
from all objects in videos with a visual grounding network
and then learn an audio-visual sound separation network to
separate sounds from individual sounding objects. More-
over, in the framework, sounding object visual grounding
labels can be adaptively adjusted based on sound separation
results to simultaneously improve grounding and separation
models, which builds a co-learning cycle for the two tasks.
Extensive experiments show that the proposed framework
achieves state-of-the-art performance on both sounding ob-
ject visual grounding and visually indicated sound separa-
tion tasks and they can benefit from each other with our
cyclic co-learning.

2. Method

We first give an overview of our co-learning framework
for sounding object visual grounding and visually indicated
sound separation in Sec. 2.1. Upon the framework, we pro-
pose a grounding network that can recognize sounding ob-
jects for both single and mixed sounds in Sec. 2.2 and in-
troduce an audio-visual sound separation network to sep-
arate sounds for grounded individual sounding objects in
Sec. 2.3. Finally, we make co-learning in a cycle with an
adjustment learning method to correct grounding labels in
Sec. 2.4, which can simultaneously improve grounding and
separation performance.

2.1. Co-Learning Framework

Given an unlabeled video clip V with the synchro-
nized sound s(t), O = {O1, ..., ON} are N detected ob-
jects in the video frames and the sound mixture s(t) =∑N

n=1 sn(t). Here, sn(t) is the sound of the object On.
When it is silent, sn(t) = 0. Our co-learning aims to
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Figure 1. Given an detected object from a video and the sound
mixture, our model will first recognize whether it is audible via a
sounding object visual grounding network and then separate its
sound with an audio-visual sound separation network if it is a
sound source.

recognize each sounding object On and then separate its
sound sn(t) for the object. The framework, as illustrated
in Fig. 1, mainly contains two modules: sounding object
visual grounding network and visually indicated sound sep-
aration network. To learn sound separation in the frame-
work, we adopt a commonly used mix-and-separate strat-
egy [2, 4, 11] during training. Given two training video and
sound pairs {V (1), s(1)(t)} and {V (2), s(2)(t)}, we obtain a
mixed sound

sm(t) = s(1)(t)+ s(2)(t) =

N1∑
n=1

s(1)n (t)+

N2∑
n=1

s(2)n (t), (1)

and find objects O(1) = {O(1)
1 , ..., O

(1)
N1
} and O(2) =

{O(2)
1 , ..., O

(2)
N2
} from the two videos. The sounding ob-

ject visual grounding network will recognize audible ob-
jects from O(1) and O(2) and the visually indicated sound
separation network will separate sounds for the grounded
objects. Sounds are processed in a Time-Frequency space
with the short-time Fourier transform (STFT).

2.2. Sounding Object Visual Grounding

Videos contain various and diverse sounds and visual ob-
jects, and not all objects are audible. To find sounding ob-
jects in videos V (1) and V (2) and further utilize grounding
results for separation, we formulate sounding object visual
grounding as a binary matching problem.
Sounding Object Candidates We first find potential au-
dible visual objects from videos using an object detector.
In our implementation, we use the Faster R-CNN [8] ob-
ject detector trained on Open Images dataset [6] from [2] to
detect objects from video frames in V (1) and V (2) and ob-
tain O(1) = {O(1)

1 , ..., O
(1)
N1
} and O(2) = {O(2)

1 , ..., O
(2)
N2
}.



Next, we learn to recognize sounding objects in O(1) and
O(2) associated with s(1)(t) and s(2)(t), respectively. For
simplicity, we use an object O and a sound s(t) as a exam-
ple to illustrate our grounding network.
Audio Network Raw waveform s(t) is transformed to an
audio spectrogram S with the STFT. An VGG [10]-like 2D
CNN architecture: VGGish followed by a global max pool-
ing (GMP) is used to extract an audio embedding fs from
S.
Visual Network The visual network extracts features from
detected visual object O. We use the pre-trained ResNet-
18 [3] model before the last fully-connected layer to extract
a visual feature map and perform a GMP to obtain a visual
feature vector fo for O.
Grounding Module The audio-visual grounding module
takes audio feature fs and visual object feature fo as in-
puts to predict whether the visual object O is one of the
sounding makers for s(t). We solve it using a binary clas-
sification network. It first concatenates fs and fo and then
uses a 3-layer Multi-Layer Perceptron (MLP) with a Soft-
max function to output a probability score g(s(t), O) ∈ R2.
Here, if g(s(t), O)[0] >= 0.5, {s(t), O} is a positive pair
and s(t) and O are matched; otherwise, O is not a sound
source.
Training and Inference To train the sounding object visual
grounding network, we need to sample positive/matched
and negative/mismatched audio and visual object pairs. It is
straightforward to obtain negative pairs with composing au-
dio and objects from different videos. For example, s(1)(t)
from V (1) and an randomly selected object O(2)

r from V (2)

can serve as a negative pair. However, positive audio-visual
pairs are hard to extract since not all objects are audible in
videos. If an object from V (1) is not audio source, the ob-
ject and s(1)(t) will be a negative pair, even though they
are from the same video. To address the problem, we cast
the positive sample mining as a multiple instance learning
problem and sample the most confident pair as a positive
sample with a grounding loss as the measurement:

n̂ = argmin
n
f(g(s(1)(t), O(1)

n ), ypos), (2)

where f(·) is a cross-entropy function; ypos = [1, 0] is an
one-hot encoding for positive pairs; O(1)

n̂ and s(1) will be
the positive audio-visual pair for training. With the sampled
negative and positive data, we can define the loss function
to learn the sounding object visual grounding:

l1 =
1

2
(f(g(s(1)(t), O(2)

r ), yneg)+f(g(s
(1)(t), O

(1)
n̂ ), ypos)),

(3)
where yneg = [0, 1] is the negative label. The visual
grounding network can be end-to-end optimized with sam-
pled training pairs via l1.

During inference, we can feed audio-visual pairs
{O(1)

i , s(1)(t)}N1
i=1 and {O(2)

i , s(2)(t)}N2
i=1 into the trained

model to find sounding objects insides the two videos. To
facilitate visually indicated sound separation, we need to de-
tect sounding objects from the sound mixture sm(t) rather
than s(1)(t) and s(2)(t), since the individual sounds are un-
available at a testing stage for separation task.

2.3. Visually Indicated Sound Separation

Given detected objects in O(1) and O(2), we separate
sounds for each object using an audio-visual sound separa-
tion network from the sound mixture sm(t) and mute sepa-
rated sounds of silent objects.
Audio-Visual Sound Separation Network We adopt a
similar audio-visual separator as in [11], which consists of
three modules: audio network, visual network, and audio-
visual sound synthesizing network. The audio network
transforms the input audio mixture STFT spectrogram Sm

to a C-channel feature map Am ∈ RC×F×T with an
U-Net [9] structure. We use an ResNet-18 [3] followed
by a linear layer to predict a C-dimension object feature
f
o
(k)
i
∈ RC for each object O(k)

i . The audio-visual sound
synthesizing network takes Am and f

o
(k)
i

as inputs and out-

put a spectrogram mask M
(k)
i ∈ RF×T with a linearly

transformed dot product of the audio and visual features.
The separated sound spectrogram: S(k)

i = Sm ×M (k)
i can

be obtained by masking the sound mixture. The waveform
s
(k)
i of the object can be reconstructed by the inverse short-

time Fourier transform.
Sounding Object-Aware Separation Using the audio-
visual sound separation network, we can predict sound
spectrograms {S(1)

n }N1
n=1 and {S(2)

n }N2
n=1 for objects inO(1)

and O(2), respectively. To learn the separation network, we
can optimize it with a L1 loss function:

l2 =
1

2
(||S(1) −

N1∑
n=1

S(1)
n ||1 + ||S(2) −

N2∑
n=1

S(2)
n ||1). (4)

However, not all objects are audible and spectrograms from
different objects contain overlapping content. Therefore,
even an object O(1)

n is not sounding, it can also separate
non-zero sound spectrogram S

(1)
n from Sm, which will in-

troduce errors during training. To address the problem, we
propose a sounding object-aware separation loss function:

l∗2 =
1

2
(||S(1) −

N1∑
n=1

g∗(sm(t), O(1)
n )S(1)

n ||1

+ ||S(2) −
N2∑
n=1

g∗(sm(t), O(2)
n )S(2)

n ||1), (5)



where g∗(·) is a binarized value of g(·)[0]. If an object O(1)
n

is not a sound source, g∗(sm(t), O
(1)
n ) will be equal to zero.

Thus, the sounding object-aware separation can help to re-
duce training errors from silent objects in Eq. 4.

In addition, we introduce additional grounding loss
terms to guide the grounding model learning from the sound
mixture. Since we have no sounding object annotations, we
adopt a similar positive sample mining strategy as in Eq. 2
and define a grounding loss as follows:

l3 =
1

2
(min

n
f(g(sm(t), O(1)

n ), ypos)

+ min
n
f(g(sm(t), O(2)

n ), ypos)). (6)

2.4. Co-learning in a Cycle

Combing grounding and separation loss terms, we can
learn the two tasks in a unified way with a co-learning ob-
jective function: lcol = l1 + l∗2 + l3.

Although our sounding object visual grounding and vi-
sually indicated sound separation models can be learned to-
gether, the two tasks loosely interact in l∗2 . Clearly, a good
grounding network can help improve the separation task.
However, the grounding task might not be able to benefit
from co-learning training since there is no strong feedback
from separation to guide learning the grounding model. To
further strengthen the interaction between the two tasks, we
propose a cyclic co-learning strategy, which can make them
benefit from each other.

If an object O(k)
n makes sound in video V (k), the sepa-

rated spectrogram S
(k)
n should be close to S(k); otherwise,

the difference between S(k)
n and S(k) should be larger than

a separated sound spectrogram from an sounding object and
S
(k)
v . We use L1 distance to measure dissimilarity of spec-

trograms:
d(k)n = ||S(k)

n − S(k)||1, (7)

where d(k)n will be small for a sounding object O(k)
n . Based

on the observation, we select the object O(k)
n with the min-

imum d
(k)
n make the dominant sound in V k to compose

positive samples for sounding object visual grounding. Let
n̂1 = argminn d

(1)
n and n̂2 = argminn d

(2)
n . We can re-

formulate grounding loss terms in Eq. 3 and 7 as:

l∗1 =
1

2
(f(g(s(1)(t), O(2)

r ), yneg) + f(g(s(1)(t), O
(1)
n̂1

), ypos)),

(8)

l∗3 =
1

2
(f(g(sm(t), O

(1)
n̂1

), ypos) + f(g(sm(t), O
(2)
n̂2

), ypos)).

(9)

In addition, if d(k)n is very large, the object O(k)
n is

very likely not be audible, which can help us mine poten-
tial negative samples for mixed sound grounding. Specif-
ically, we select the objects that are associated with the

largest d(k)n , and d(k)n must be larger than a threshold ε. Let
n∗1 = argmaxn d

(1)
n , s.t. d(1)n > ε and n∗2 = argmaxn d

(2)
n ,

s.t. d(2)n > ε. We can update l∗3 with learning from potential
negative samples:

l∗3 =
1

4

2∑
k=1

(f(g(sm(t), O
(k)
n̂k

), ypos)+f(g(sm(t), O
(k)
n∗
k
), yneg)).

(10)
Finally, we can co-learn the two tasks in a cycle with op-
timizing the joint cyclic co-learning loss function: lccol =
l∗1+l

∗
2+l

∗
3 . Inside cyclic co-learning, we use visual ground-

ing to improve sound separation and enhance visual ground-
ing based on feedback from sound separation. The learning
strategy can make the tasks help each other in a cycle and
significantly improve performance for both tasks.

3. Experiments
3.1. Experimental Setting

Dataset In our experiments, 520 online available musical
solo videos from the widely-used MIT MUSIC dataset [11]
is used. The dataset includes 11 musical instrument cat-
egories: accordion, acoustic guitar, cello, clarinet, erhu,
ute, saxophone, trumpet, tuba, violin, and xylophone.
The dataset is relatively clean and sounding instruments
are usually visible in videos. We split it into train-
ing/validation/testing sets, which have 468, 26, 26 videos
from different categories, respectively. To train and test our
cyclic co-learning model, we randomly select three other
videos for each video to compose training and testing sam-
ples. Let’s denote the four videos as A, B, C, D. We com-
pose A, B together as V (1) and C, D together as V (2), while
sounds of V (1) and V (2) are only from A and C, respec-
tively. Thus, objects from B and D in the composed sam-
ples are inaudible. Finally, we have 18720/260/260 com-
posed samples in our training/validation/testing sets for vi-
sual grounding and sound separation tasks.
Evaluation Metrics For sounding object visual grounding,
we feeding detected sounding and silent objects in videos
into different grounding models and evaluate their binary
classification accuracy. For sound separation, we use the
commonly used mir eval library [7] to measure performance
in terms of two standard metrics: Signal-to-Distortion Ra-
tion (SDR) and Signal-to-Interference Ratio (SIR).
Implementation Details We sub-sample audio signals at
11kHz, and each video sample is approximately 6 seconds.
The STFT is calculated using a Hann window size of 1022
and a hop length of 256 and each 1D audio waveform is
transformed to a 512 × 256 Time- Frequency spectrogram.
Then, it is re-sampled to T, F = 256. The video frame rate is
set as 1fps and we randomly select 3 frames per 6s video.
Objects extracted from video frames are resized to 256 ×
256 and then randomly cropped to 224 × 224 as inputs to



Table 1. Sounding object visual grounding performance (%). Top-
2 results are highlighted.

Methods OTS [1] DMC [5] Grounding only CoL CCoL

Single Sound 58.7 65.3 72.0 67.0 84.5
Mixed Sound 51.8 52.6 61.4 58.2 75.9

Table 2. Visually indicated audio separation performance. Top-2
results are highlighted.

Methods SoP [11] CoSep [2] CoL CCoL Oracle

SDR 3.42 1.41 6.50 7.27 7.71
SIR 4.98 4.26 11.81 12.77 11.42

our network.
Sounding Object Visual Grounding We compare our
methods to two recent methods: OTS [1] and DMC [5]. In
addition, we make an ablation study to investigate the pro-
posed models. The Grounding only model is trained only
with grounding losses: l1; the co-learning (CoL) model
jointly learn visual grounding and sound separation using
the lcol; and the cyclic co-learning (CCoL) further strength-
ens the interaction between the two tasks optimized via
lccol. We evaluate sounding object visual grounding per-
formance on both solo and mixed sounds.

Table 1 show sounding object visual grounding results.
Even our grounding only has already outperformed the OTS
and DMC, which can validate the effectiveness of the pro-
posed MIL-based positive sample mining approach. Then,
we can see that the CoL with jointly learning grounding and
separation achieves worse performance than the Grounding
only model. It demonstrates that the weak interaction inside
CoL cannot let the grounding task benefit from the sepa-
ration task. However, with introducing separation results
to help the grounding sample mining, our CCoL is signif-
icantly superior over both Grounding only and CoL mod-
els. The results can demonstrate the sounding object visual
grounding can benefit from visually indicated sound sepa-
ration with our cyclic learning.
Audio-Visual Sound Separation Results To demonstrate
the effectiveness of the proposed CCoL framework on
audio-visual sound separation, we compare it to two recent
state-of-the-art methods: SoP [11] and CoSep [2] and the
CoL baseline model in Table 2. Note that SoP and CoSep
are trained using source code provided by the authors and
the same training data as ours. Moreover, we show separa-
tion results of an Oracle model, which directly feeds ground
truth grounding labels of mixed sounds to train the audio-
visual separation network.

We can see that our CoL outperforms both SoP and
CoSep, and CCoL is better than CoL. The results demon-
strate that sounding object visual grounding in the co-
learning can help to mitigate training errors from silent
video objects in separation, and separation performance can
be further improved with the help of enhanced ground-

ing model by cyclic co-learning. Compared to the Ora-
cle model, it is reasonable to see that CCoL has slightly
lower SDR. A surprising observation is that CoL and CCoL
achieve better results in terms of SIR. One possible reason is
that our separation networks can explore various visual ob-
jects as inputs during joint grounding and separation learn-
ing, which might make the models more robust on SIR.

From the sounding object visual grounding and audio-
visual sound separation results, we can conclude that our
cyclic co-learning framework can make the two tasks ben-
efit from each other and significantly improve both visual
grounding and sound separation performance.
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