1080

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 3, MARCH 2019

Discrete Spectral Hashing for Efficient
Similarity Retrieval

Di Hu

Abstract— To meet the required huge data analysis, organiza-
tion, and storage demand, the hashing technique has got a lot
of attention as it aims to learn an efficient binary representation
from the original high-dimensional data. In this paper, we focus
on the unsupervised spectral hashing due to its effective manifold
embedding. Existing spectral hashing methods mainly suffer
from two problems, i.e., the inefficient spectral candidate and
intractable binary constraint for spectral analysis. To overcome
these two problems, we propose to employ spectral rotation
to seek a better spectral solution and adopt the alternating
projection algorithm to settle the complex code constraints,
which are therefore named as Spectral Hashing with Spectral
Rotation and Alternating Discrete Spectral Hashing, respectively.
To enjoy the merits of both methods, the spectral rotation
technique is finally combined with the original spectral objective,
which aims to simultaneously learn better spectral solution and
more efficient discrete codes and is called as Discrete Spectral
Hashing. Furthermore, the efficient optimization algorithms are
also provided, which just take comparable time complexity to
existing hashing methods. To evaluate the proposed three meth-
ods, extensive comparison experiments and studies are conducted
on four large-scale data sets for the image retrieval task, and
the noticeable performance beats several state-of-the-art spectral
hashing methods on different evaluation metrics.

Index Terms— Spectral rotation, discrete spectral hashing.

I. INTRODUCTION

ITH the popularization of digital devices, the visual,
W audio, and text data can be easily recorded, transmitted,
and stored. That is, we have already entered the big data era
nowadays. To satisfy the required huge analysis, organization
and storage demand in dealing with such big data, hashing
technique are being paid more and more attention. This is
because the existing digital devices are almost based on the
binary mode, and hashing method exactly aims to learn effi-
cient binary representation from the original high-dimensional
data. Such projection can vastly reduce the storage space

Manuscript received March 26, 2018; revised July 28, 2018; accepted
September 30, 2018. Date of publication October 10, 2018; date of current ver-
sion October 29, 2018. This work was supported in part by The National Key
Research and Development Program of China under Grant 2018 YFB1107400,
and in part by The National Natural Science Foundation of China under Grant
61761130079, Grant 61772427, and Grant 61751202. The associate editor
coordinating the review of this manuscript and approving it for publication
was Prof. Husrev T. Sencar. (Corresponding author: Feiping Nie.)

D. Hu and F. Nie are with the School of Computer Science and Engi-
neering, Northwestern Polytechnical University, Xi’an 710072, China (e-mail:
hdui831@mail.nwpu.edu.cn; feipingnie @gmail.com).

X. Liis with the Xi’an Institute of Optics and Precision Mechanics, Chinese
Academy of Sciences, Xi’an 710119, China (e-mail: xuelong_li@opt.ac.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2018.2875312

, Feiping Nie™, and Xuelong Li

, Fellow, IEEE

and processing time. These advantages make it widely used
in various machine learning and computer vision problems,
such as multi-view learning [1], multi-task learning [2], image
retrieval [3], classification [4], and image patch matching [5].
Concretely, hashing focuses on projecting the original high-
dimensional, real-valued data into the low-dimensional, binary
codes while preserving the similarity structure across the data
points in the database [6]. Among the numerous hashing
techniques, the unsupervised ones draw great attention due
to its advantages of label-free. To efficiently generate binary
codes from the original data, one of the early representative
unsupervised method, Locality Sensitive Hashing (LSH) [7],
randomly projects the data into binary codes based on certain
similarity measures, such as p-norm distance [8], and cosine
similarity [9]. Besides, Kernel LSH (KLSH) [10] is also pro-
posed for capturing more complex correlation. However, such
works just utilize random projection without modeling the data
structure in the original space, which results in the inefficient
data-independent hashing function. In other words, more bits
are required to achieve high recall and precision [11], which
actually lies in the opposite direction of hashing objective.
To generate more compact codes, data-dependent hash-
ing methods have attracted much attention recently [12].
These works develop the hashing functions by modeling the
data structure in different view points. Andoni and Razen-
shteyn [13] extends the original LSH into the data-dependent
scenario with theoretical guarantee. Iterative Quantization
(ITQ) [14] aims to maximize the data variance of each bit
via PCA projection, while Isotropic Hashing [15] targets to
make the code dimensions into equal variance. Apart from
the conventional linear projections, deep Binary Autoencoder
(BA) network is also proposed to reconstruct the original
data from the embedded short codes [16], which aims to
learn a common semantic space [17]. These methods under
different motivations attempt to capture different properties of
the training data to achieve more efficient hashing function.
Recently, another category based on spectral graph shows
considerable performance and is paid more attention, where
the Laplacian eigenmap is employed to learn the intrin-
sic manifold structure and nonlinearly embed the data into
proper codes. Concretely, Spectral Hashing (SH) [18] firstly
introduces the spectral analysis into the hashing technique,
which aims to make the similar items have similar binary
codes. To accelerate the building of affinity matrix, Anchor
Graph Hashing (AGH) [19] proposes to construct a sparse
and low-rank neighborhood graph, then performs eigenmap

1057-7149 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-7118-6733
https://orcid.org/0000-0002-0871-6519
https://orcid.org/0000-0003-2924-946X

HU et al.: DSH FOR EFFICIENT SIMILARITY RETRIEVAL

based on it to acquire the spectral embedding. Different from
AGH, Inductive Manifold Hashing (IMH) [20] proposes to
embed the codes via t-SNE instead of Laplacian eigenmap.
Although these spectral methods enjoy the merits of manifold
embedding, the optimal hashing function is actually difficult
to learn as it is intractable to optimize the spectral objective
under the binary constraint [16].

To overcome the above weakness, most methods adopt a
two-stage strategy to generate hashing codes. That is, they first
optimize the spectral objective without the binary constraint,
then perform the binarization over the real-valued spectral
solution. As the binarization operation takes no consideration
of learned manifold structure, it could destroy the embedded
neighborhood structure and lower the code efficiency. To
be able to directly generate the binary codes along with
learning the low-dimensional structure, some researchers con-
sider to employ a quantization term between the real-valued
and binary codes to relax the binary constraint. Concretely,
ITQ [14] reduces the quantization error between the rotated
PCA-embedded data and the discrete codes, while Discrete
Graph Hashing (DGH) [11] minimizes the distance between
the real-valued set and the binary set, similarly for [21]. As
the code constraints are actually performed on the real-valued
solution instead of the hashing codes, the final codes are
not efficient as expected, even lower than the binarized ones.
On the other hand, there still remains another problem that
the obtained spectral solution may deviate from the discrete
one, as there is no guarantee that such yielded solution best
approximates the binary codes. As a matter of fact, there exist
numerous solutions to the relaxed spectral hashing objective
and we wish to find a better one for code generation.

In this paper, we propose to extremely exploit the ability
of unsupervised spectral hashing method in learning efficient
binary codes. To accomplish such purpose, we need to solve
the aforementioned problems step by step, i.e., the inefficient
spectral solution and intractable binary constraint. To this end,
our contributions are summarized as follows,

« We attempt to seek better spectral solution to the discrete
codes instead of the original candidate. For such purpose,
the spectral rotation technique is taken consideration
into the graph hashing method, which could transform
the candidate into a more proper one via a learnable
orthogonal matrix. Meanwhile, to make the hashing codes
satisfy the constraints, an efficient algorithm is proposed
to solve the new spectral objective and corresponding
hashing codes, which is named as Spectral Hashing with
Spectral Rotation' (SHSR).

o To directly learn the compact binary codes and avoid the
quantization error caused by the relaxation of discrete
constraint, we propose to divide all the code constraints
into two sets and perform alternating projection over
them in an iteratively re-weighted framework, which is
named as Alternating Discrete Spectral Hashing (ADSH).
Such method can reduce the intractable discrete spectral
problem into two easy-to-handle sub-problems that can
be effectively solved by off-the-shelf methods.

IThe preliminary version [22] has been accepted by AAAI 2017.

1081

o As the above two methods just focus on the partial
weakness of spectral hashing, it is highly expected to
enjoy both advantages in learning hashing function.
Hence, we propose to simultaneously learn better spectral
solution with the rotation technique and generate more
efficient discrete codes under required code constraints,
which is called as Discrete Spectral Hashing (DSH).

« Extensive experiments are conducted on four large-scale
benchmark datasets, which also include the evaluations in
the code efficiency, parameter effects, and out-of-sample
strategies. The results show that the three proposed
methods effectively solve the conventional problems of
spectral hashing, so that they can learn more efficient
codes than other methods on various metrics.

In the following sections, we first revisit the conventional
spectral-based hashing methods in Section 2. In Section 3,
we perform the spectral rotation technique over the original
spectral solution for seeking more efficient codes. Then we
propose the alternating projection algorithm for directly solv-
ing the discrete hashing problem in Section 4. Section 5 intro-
duces an united framework to integrate the merits of above
two methods and the detailed optimization is also provided.
Extensive experiments are conducted for evaluating the three
methods on the benchmark datasets in Section 6. In the end,
Section 7 concludes this paper.

II. SPECTRAL HASHING REVISITED

Unsupervised hashing targets to map the high-dimensional
data x; € R? into the binary codes b; € {—1, 1}", while pre-
serving the similarity structure across the data points {x;}_,.
As the Hamming distance indicates the similarity between
binary codes, the hashing objective function can be formulated
as

min > Wi |[bi —b; I
ij=1

st.Be{—=1,1}"", B'B=nl B'1=0, (1)

where B = [by, by, ..., b,17, W is the affinity matrix indi-
cating the similarity between each two data points in {x;}}"_,.
To make the codes efficient, the three constraints require the
codes to be discrete, orthogonal, and balanced (i.e., each bit
to have equal chance to be —1 or 1).

Theorem 1: For a single bit, solving Eq. 1 is equivalent to
balanced graph partitioning and is NP-hard.

However, according to [18, Th. 1], eq. 1 is difficult to solve.
A tractable approach is to turn Eq. 1 into a spectral problem,
which can be written as

min 77 (BT(D - W)B)

st.Be{—=1,1}"", B'B=nl B'1=0, (2

where D is a diagonal matrix whose entries d;; = Y. Wi,

L = D—W is the graph Laplacian matrix [23], and Tr djenotes
the trace operation of matrix.

Although the original problem is turned into the spectral
hashing problem, both of them suffer from the high time
complexity of constructing the affinity matrix W, which

1082

is O (dn?). With the increasing dimensionality d and samples
n of the original data, these methods have to be faced with
a huge training time. A possible way to overcome such
weakness is to construct a neighborhood graph to approxi-
mate the affinity matrix W, which can be performed in the
linear time of number of samples [24]. To approximate the
underlying neighborhood structure, a small set of m < n
points are first chosen as the anchors U = {u j € R ".1_1,
which are usually the centers of clusters. Then a kiné of
local non-linear measurement between data points and anchors
is conducted as Z;; = K (x,-,uj)/N, where K(-) is the
distance function used to measure the similarity between data
x; and anchor u;, such as ¢, distance in Gaussian kernel
space, j is one of s < m nearest anchors to current data x;.
And N = > jel) K (x,-,u j). Finally, the normalized matrix
Z € R™ gives the approximated low-rank affinity matrix
A =7ZA'ZT, where A = diag(Z'1).

As the affinity matrix A has been normalized by A~!, all
summation of the columns and rows are equal to one and the
Laplacian matrix becomes L = I — A. Hence, Eq. 2 becomes
a maximization problem, i.e.,

InélX Tr (BTAB)
st.Be{—=1,1"", B'B=nl, B'1=0. (3

In fact, although the construction of affinity matrix has
been accelerated, Eq. 3 is still hard to solve due to the
binary constraint. A common strategy is to abandon the
constraint and obtain the spectral solution F by performing
the eigen-decomposition over the similarity matrix A, where
the r eigenvectors of the matrix A with maximal eigenvalue
(excluding the eigenvector with eigenvalue one) are treated as
the spectral codes F. On the one hand, as these eigenvectors are
orthogonal to each other, they satisfy the orthogonal constraint
after multiplying the scale /7. On the other hand, the excluded
eigenvector with eigenvalue O is 1 if the constructed graph L
is connected. As all the other eigenvectors are orthogonal to
it, the obtained spectral solutions satisfy F7 1 = 0. To generate
the final binary codes B, the binarization operation with thresh-
old “0” is performed over the solution F. Such codes obtained
by the two-stage method could lower the code efficiency, as the
rounding operation may result in the improving error with
the increasing code length r and even break the last two
constraints.

To generate more efficient binary codes, the discrete con-
straint B € {—1, 1}"*" is taken consideration again. Recently,
DGH [11] proposes to relax the binary constraint and append
a penalty term of the quantization error between real-valued
and binary codes. Although the discrete codes can be directly
generated in such framework, the codes are not efficient
as expected. This is because the last two constraints are
still performed on the real-valued ones. While RDSH [25]
introduces an additional quantization error into the original
spectral hashing objective but without the orthogonal and
balanced constraint, which is therefore just comparable to the
SH-methods. In this paper, to address the above weakness
further, we propose to solve the original spectral hashing

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 3, MARCH 2019

problem (i.e., Eq. 3) step by step, and aim to learn more
efficient binary codes.

III. SPECTRAL ROTATION HASHING
A. Spectral Hashing With Spectral Rotation

As the conventional spectral hashing objective is a NP-hard
problem, the practical strategy is to relax it into

max Tr(FT AF)
sit. Fe R FTF =al, FT1=0. 4)

As the discrete constraint is abandoned, the required second-
stage of binarization is performed over the spectral solution F.
In fact, due to the binary property, the final coding matrix B
obtained by the sign function over F is the optimal solution of
minimizing the quantization error of their Euclidean distance.
However, it is difficult to guarantee that such yielded spectral
solution best approximates the efficient binary codes, as there
are still numerous solutions fitting to Eq. 4. Hence, can we
find a closer real-valued solution to the discrete one?

In fact, for any F, FQ is another solution to Eq. 4, where
Q is an arbitrary orthogonal matrix. Hence, we hope we can
find a better FQ that is closer to the binary codes B, which
can be formulated as

in |[FQ — B2
112151 IFQ %
st.Be{—1,1}, B'1=0, Q’Q=1, ®)

where the Frobenius norm is employed to measure the distance
from the discrete solution B to the revised spectral solution
FQ. Different from the constraint violation of B in the previous
methods, Eq. 5 still preservers the balanced constraint and just
relaxes the orthogonal constraint, which could make the code
be more efficient.

The objective function in Eq. 5 can be iteratively optimized
by solving the following problems

When Q is fixed, Eq. 5 w.r.t. B can be re-written as

min B~ M|} =" [b; —m; |}
j
st.Be{—1,1}"", BT1=0, (6)

where b; and m; are the j—column of matrix B and M = FQ,
respectively. As the binary constraint makes the term of b]Tb j
equal to n, minimizing Eq. 6 is equivalent to maximizing the
dot product of the column pair b; and m;. Concretely, for
each column b,

T
n%f:x bjm]
st bj e {=1,1y>", bi1=0. (7

As the elements of b; have to be —1 or 1 equably, the optimal
solution of b; can be directly obtained by sorting m; in
descending order and then assigning the binary value for each
half part, which can be written as
booo |1 ami) =n/2
ij = .
—1, otherwise,

®)

HU et al.: DSH FOR EFFICIENT SIMILARITY RETRIEVAL

Algorithm 1 Spectral Hashing With Spectral Rotation

Input: Training data X € R™*%, affinity matrix A.
Output: The binary codes B € {—1,1}""".
1: Solve Eq. 4 and obtain the candidate real-valued solution
F e R,
2: Initial an arbitrary orthogonal matrix Q € R"*".
3: Fix Q, assign 1 or —1 to the elements of each column of
B by Egqg. 8.
4: Fix B, update Q and obtain better real-valued solution by
Eq. 9.
5: Repeat above 3-4 steps until convergence or N steps.

where q(m;;) stands for the order of m;; after sorting. Then
the assigned vector b; constitutes the matrix B as a column.
When B is fixed, Eq. 5 w.r.t. Q can be written as

mélx Tr (GQ)

st.QTQ =1, &)

where G = B”F. The analytical solution to Eq. 9 can be
directly obtained via Theorem 2.

Theorem 2: Q = VU! is the optimal solution to the
given objective function in Eq. 9, where U and V are the
left and right singular vectors of the compact Singular Value
Decomposition (SVD) of G.2

The proposed optimization of B and Q are executed
iteratively until satisfying the convergence criteria, i.e. the
unchanged binary code matrix B. We summarize the pro-
posed Spectral Hashing with Spectral Rotation (SHSR) in
Algorithm 1. And the time complexity of spectral rotation is
O (2nr*N + rnNlog,n), where the former part corresponds
to solving Q, the latter is for solving B, and N is the budget
iteration number and set to 20 in this paper. As the code length
r is a tiny number compared with n, SHSR can be achieved
in a few seconds.

B. Out-of-Sample

The above compact codes are all learned from the training
data {x;}7_,, but it is necessary to generate efficient codes
b (x*) for the new data x* beyond the dataset. As the bina-
rization strategy could result in roughly approximated binary
codes, the real-valued solution is considered in order to ensure

the code efficiency instead of the discrete one,’

n
. * o ®) o 2
b(x*)rg{lill,l}’ ;a (x ,x,) ”b (X) m,’

Y (0)

where A (x*,x) is the affinity vector between x* and all
the data points {x;}7_;, which can be directly obtained via
ZA~'z(x*). As the generated codes are binary, Eq. 10 is
equivalent to

<b (x*),(FQ)TZA’lz(x*)>. (11)

max
b(x*)e{—1,1}"

2The proof can be found in the appendix
3Experimental study is performed in the following sections.

1083

high dimensional data

Laplacian eigenmap

discrete coding

Fig. 1. The manifold learning perspective of spectral rotation. Suppose that
the training data has been embedded into the low-dimensional manifold in the
black cross points. The red cross points represent the solution transformed
by spectral rotation, which are closer to the corresponding discrete codes
represented in triangles.

As b (x*) is restricted to be binary value, the optimal solution
to Eq. 11 becomes

b (x*) = sgn (Pz (x*)),

where sgn(-) is the sign function. Note that P = (FQ)” ZA~!
can be pre-computed, hence it is feasible to make the out-of-
sample hashing more efficient.

12)

C. Manifold Learning Perspective

The conventional spectral hashing embeds the high-
dimensional features on a low-dimensional manifold via the
Laplacian eigenmap, as shown in Fig. 1. The nonlinear eigen-
map is expected to find the inherent manifold structure of
original features, while preserving the neighborhood simi-
larity. Unfortunately, even if the neighborhood manifold is
successfully learned, the second procedure of discrete codes
binarization could still mix them with other non-adjacent
embedded points. In such circumstance, spectral rotation aims
to derive better spectral solution to the corresponding discrete
ones by taking advantage of the orthogonal matrix Q, while
preserving the similarity structure. For example, Fig. 1 shows
that it transforms the original embedded points F into the new
ones FQ that are closer to discrete coding (in terms of £») via
the red arrow (i.e., the orthogonal transformation Q). Hence,
it is reasonable that the transformed spectral solution becomes
more efficient in generating the hashing codes. Moreover,
it is also important to note that spectral rotation is obviously
different from the rotation technique in ITQ. First, ITQ is just a
kind of data rotation after linear PCA projection, while spectral
rotation is performed with spectral embedding and aims to
seek better solution while maintaining the manifold structure.
Second, spectral rotation aims to shrink the distance between
real-valued codes and discrete ones as introduced above, which
is different from the objective of balanced variance in ITQ.

IV. ALTERNATING DISCRETE SPECTRAL HASHING

Although SHSR can transform the candidate spectral solu-
tion into proper positions via the efficient spectral rotation
technique, it is essentially a kind of two-stage methods. Hence,
it suffers from the same defect as the previous methods in deal-
ing with the binary constraint. Moreover, when seeking better
spectral solution by Eq. 5, the original three code constraints

1084

are not simultaneously kept, where the orthogonal constraint
is relaxed via the spectral solution. As such weaknesses may
lower the code efficiency, we hope to directly solve the spectral
hashing problem.

It is well known that the conventional spectral hashing
objective is difficult to solve under such complex constraints.
Fortunately, the re-weighted framework provides the possibil-
ity to turn it into an easier problem without any conditional
hypothesis on the constraints.* That is, we can treat Eq. 3 as a
composite function of & (g (x)), where g (x) = x and /4 (x) =
Tr (x" Ax). As h(x) is a convex function in the domain of
g (x), we can calculate its supergradient and multiple it by

g (%), ie.,
InélX Tr (BTS)

st.Be{—=1,1}"", B'B=nl, BT1=0, (13)

where S = 2AB is obtained by taking the derivative of Eq. 3
w.r.t B and viewed as the weight in Eq. 13. As the weight S
is fixed in each iteration, Eq. 13 can be re-written as

min |[B — S||7

st. Be{=1,1y>", B'B=nl B'1=0. (14)

The three maintained code constraints make Eq. 14 difficult
to solve, especially the binary one. To make it tractable,
we propose to employ alternating projection w.r.t. these con-
straint sets. Specifically, the three constraints are divided
into two sets, i.e., T = {BlB ef{—1, 1), BT1= O} and
my = {B[B”B = nl}. Then, Eq. 14 is optimized by alternately
solving the following two sub-problems.

The first sub-problem w.r.t. 7| set can be re-written as

min |[B - S|I%

st.Be{-1,1y"", BT1=0. (15)

It is obvious that Eq. 15 is the same as the first sub-problem
of SHSR, so the sorting algorithm can be directly employed
for solving it but based on the magnitude of S,

1,
b,‘j = 1

where q(s;;) stands for the order of s;; after sorting.
The second sub-problem w.r.t. 7 set can be re-written as

q(sij) <n/2

. (16)
otherwise,

ml?x Tr (BTS)

s.t. BTB = nl. (17)

Different from Eq. 9, the orthogonal constraint is replaced with
B”B = nl due to the binary property. However, according to
Theorem 2, we can still obtain the optimal solution of Eq. 17
by multiplying the modified singular value /n. That is, B =
/nUVT where U and V are the left and right singular vectors
of the SVD of S.

The optimization w.r.t. the two constraint sets {z{, 72}
are performed alternately, which is named as Alternat-
ing Discrete Spectral Hashing (ADSH) and summarized in

4More theoretical analysis can be found in [26].

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 3, MARCH 2019

Algorithm 2 Alternating Discrete Spectral Hashing

Input: Training data X € R™*?, affinity matrix A.
Output: The code matrix B € {—1,1}"*".
1: Initial an orthogonal matrix F € R™*", then rounding it
into candidate code matrix B via zero.
Assign binary codes to each column of B by Eq. 16.
Update B by solving Eq. 17.
Update S = 2AB.
Repeat above 2-4 steps until convergence or N steps.

Algorithm 2. The proposed algorithm holds the time com-
plexity of O (2nr?N + nrNlogyn + nmrN), where N is the
iteration number and set to 30 in the experiments. Note that,
0 (nerogzn) corresponds to assigning the codes according
to the ranking result, and O (2n7>N) is about updating the
coding matrix B by solving Eq. 17. As the constructed affinity
matrix A is both low-rank (at most m) and sparse, the update
of weight S enjoys low time complexity of O (nmrN).

In fact, the proposed ADSH is based on alternating pro-
jection that is a simple optimization algorithm performed on
convex sets [27]. Although lots of works have confirmed
its effectiveness [27], including our method, it is hard to
theoretically guarantee the convergence when faced with the
non-convex property of the constraint sets. In the next section,
we propose a simple but at the same time more efficient
method to directly learn the binary codes, which avoids the
weakness of alternating projection algorithm.

Similar with the strategy of SHSR in generating the hashing
codes for out-of-samples, ADSH also performs the similarity
measurement in the hamming space but without the rotation
matrix Q. Hence, Eq. 11 becomes
(b(x). B ZA™"z (x")).

max (18)

b(x*)e{—1,1}"
Then, the binary codes can be derived as b(x*) =
sgn (Pz (x*)), where P = BY ZA~! can also be pre-computed
for acceleration.

V. DISCRETE SPECTRAL HASHING

Although ADSH has attempted to solve the original spectral
hashing objective, it has to be faced with the non-convex
constraint of orthogonality. Meanwhile, the efficient spectral
rotation technique is also not considered within ADSH. Hence,
to simultaneously address the above problems and enjoy the
bilateral merits, we propose to solve the Laplacian eigenmap
problem while learning efficient binary codes via the quanti-
zation of spectral rotation. The objective is written as

in Tr(F'LF FQ — B|3
pnin, r() +a llFQ — Bl

st. FTF=nl, Q'Q=1 Be{-1,1}", BT'1=0,
(19)

where o is a tuning parameter. Intuitively, Eq. 19 is the
weighted combination of the two-stage method of SHSR.
However, Eq. 19 actually can be viewed as an united spectral
hashing framework that involves the above two proposed

HU et al.: DSH FOR EFFICIENT SIMILARITY RETRIEVAL

methods. Concretely, when a — 0, to effectively generate the
discrete codes, we can employ the two-stage SHSR instead.
On the contrary, when a — oo, Eq. 19 turns into the
original spectral hashing problem, i.e., Eq. 3, where ADSH
can be employed for solving it. However, when « is set to an
arbitrary constant, Eq. 19 can not be directly optimized by the

aforementioned algorithms. In fact, if we simply take F = FQ,
Eq. 19 can be equivalently transformed into

min Tr(FTLF) + o ||F — B

st. FTF=nl, Be{-1,1}", B'1=0. (20

In Eq. 20, the discrete and balanced constraint are directly per-
formed over the hashing codes, while the orthogonal constraint
is relaxed to the spectral one due to the difficult optimization.
By contrast, DGH relaxes and transfers all the expected
constraints to the spectral solution, while the discrete codes are
obtained by gradient ascent instead of the Laplacian eigenmap,
hence, the generated codes cannot enjoy the same efficiency
as DSH. And RDSH even does not take consideration of the
constraints within its objective.

The DSH objective can be iteratively optimized w.r.t. F and
B, which leads to the following two sub-problems.

When B is fixed, then Eq. 20 becomes

max Tr(F"AF) 4+ 2aTr(F'B). 1)
FTF=nl

Obviously, Eq. 21 is a quadratic problem defined on the
Stiefel manifold,” which aims to find the approximated binary
eigenvector of the matrix A. Although the power iteration
is an efficient iterative method to compute the dominant
eigenvalue and corresponding eigenvector of arbitrary sym-
metric matrix [28], it can not be directly used for solving
Eq. 21 due to the existing quantization term. More precisely,
the Lagrangian function for such quadratic problem can be
written as

L(F,A) = Tr(FTAF) 4+ 2aTr(F'B) — Tr((FTF — nI)A).
(22)

By setting the derivative w.r.t. F to zero, we can get the KKT
condition of Eq. 21,
OL(F, A)
oF
However, it is difficult to directly solve F. Recently, Gen-
eralized Power Iteration (GPI) [29] proposes to impose the
re-weighted methods into the power iteration algorithm. Con-
cretely, GPI takes the derivative of Eq. 21 wrt F as the
weighting parameter for current spectral solution in each
power iteration, then updates the solution for the next weighted
trace problem. The detailed GPI algorithm is summarized in
Algorithm 3.
When F is fixed, then Eq. 20 becomes

— 2AF + 2aB — 2FA = 0. (23)

min |[F —BJ%

st.Be{=1,1y"*", B'1=0. (24)
5The orthonormal column in the Stiefel manifold, F'F= L, is replaced by
FTF = nI due to the binary property.

1085

Algorithm 3 Generalized Power Iteration

Input: The affinity matrix A € R™ ", the matrix B €
{_1’ 1}n><’r'

Output: The matrix F € R™*".

Initial an orthogonal matrix F € R™*"

Update M = 2AF + 2aB .

Perform the compact SVD over M, i.e., M = Usv”
Update F = /nUV7,

Repeat above 2-4 steps until convergence or N¢g steps.

A S

Algorithm 4 Discrete Spectral Hashing

Input: Training data X € R"*9, affinity matrix A.
Output: The code matrix B € {—1,1}"".
1: Initial an orthogonal matrix F € R™*"
2: Update F via the GPI in Algorithm 3.
3: Assign binary codes to each column of B according to the
magnitude of columns of F.
4: Repeat above 2-3 steps until convergence or N steps.

Similar with the aforementioned two spectral-based methods,
Eq. 24 can be effectively solved by the sorting algorithm. Then
the whole optimization w.r.t. F and B are executed iteratively
and summarized in Algorithm 4, which is named as Discrete
Spectral Hashing (DSH). As GPI and the sorting algorithm can
find proper local and global optimum, the bounded objective
of Eq. 20 can monotonically converge to a stationary point.

Although DSH employs an iteration manner to learn the
hashing codes, it enjoys comparable time complexity of
O (nmrNgN + nrNlog,n), where N and N are the budget
iteration numbers of GPI and the whole DSH method, respec-
tively. The former part relates to solving the spectral solution
via the GPI algorithm, while the latter one corresponds to the
quantization term in Eq. 20. Similar with the above ADSH,
in view of the low-rank (at most m) and sparse matrix A,
multiplying it with F can be efficiently performed. As for
the hashing codes generation for the out-of-samples, the same
strategy as ADSH is adopted, i.e., Eq. 18.

Table I shows the comparison of time complexity between
conventional spectral-based methods and our proposed meth-
ods, where the complexity of constructing the affinity matrix
A is not included. It is obviously that AGH enjoys the
lowest complexity, as it directly solves the spectral solution
via eigen-decomposition. By contrast, RDSH has to solve a
standard Sylvester equation when seeking the spectral solution
F, hence, it takes the largest one of O (n®). And the rest
four methods are all based on the iterative optimization for
the spectral-based objectives. As the hyper-parameter of m, r
and N are independent of the dataset size, they enjoy linear
training time with n. Note that, the term of nr?N in DGH
is much larger than the term of nrNlog,n in our proposed
methods, as the hashing codes r usually takes dozens of bits
to encode features, which is greater than log,n. Meanwhile,
as our methods need less iterations to converge, they take lower
complexity compared with DGH.

1086

TABLE I

THE TIME COMPLEXITY COMPARISON AMONG EXISTING
SPECTRAL HASHING METHODS

Methods Time complexity
AGH [19] O (m?n+ (s+1)rn)
DGH [11] O (nmrNeN + r?nN)
RDSH [25] O (n3)
SHSR O (m*n+ (s +1)rn + 2nr2N + nrNlogyn)
ADSH O (2nr2N + nrNlogyn + nmrN)
DSH O (nmrNgN + nrNlogyn)
VI. EXPERIMENTS
A. Dataset

Four benchmark datasets are chosen for evaluation, includ-
ing MNIST® [31], CIFAR-107 [32], YouTube Faces® [33], and
NUS-WIDE’ [34].

MNIST dataset consists of 70,000 images of handwritten
digits from “0” to “9”. These images are all 28 x 28 pixels,
which result in the 784D feature vectors for representation.
The testing set consists of 100 samples of each digit, which
are randomly sampled. The remaining samples constitute the
training set.

CIFAR-10 is a collection of 60,000 tiny images, which
consists of ten object categories (6000 images per category).
And 512D GIST vector [35] are pre-extracted from these
images and used as the image feature for evaluation. This
dataset is split into a training set of 59,000 samples and a
testing set of 1,000 samples (100 samples per object).

YouTube Faces is a database of 3,425 face videos captured
from 1,595 different people. Similar with the setting of [11],
a new subset is constructed by selecting the person who has at
least 500 face images, which results in 370,319 samples. And
1,770D LBP vector [36] is also pre-extracted for representing
images. For this subset, the testing set consists of 3,800 images
from 38 people who have more than 2,000 images, and
we uniformly sample 100 images from each people. The
remaining samples constitute the training set.

NUS-WIDE consists of 269,648 multi-label images. Dif-
ferent from the above three datasets whose samples with
the same label are usually considered as the true neighbors,
the true neighbors in the NUS-WIDE are defined as whether
two images share at least one label. The common 21 labels are
considered in our experiments and the images are represented
into 500D bag-of-words based on SIFT. 100 images are
uniformly sampled from each label and constitute the testing
set, and the rest images are served as the training set.

B. Metric

The conventional evaluation metrics, Hamming ranking and
hash lookup, are both adopted. Specifically, Hamming ranking
focuses on the quality of whole retrieved items, while hash

6http://yann.lecun.com/exdb/mnist/
7https://www.cs.toronto.edu/ kriz/cifar.html
8https://www‘cs‘tau.ac‘ill wolf/ytfaces/
9http://lms.comp.nus.edu.sg/research/NUS—WIDE.htm

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 3, MARCH 2019

lookup just deals with the top retrieved items. Hence, Ham-
ming ranking computes the Mean Average Precision (MAP)
based on the Hamming distance to a query, and hash lookup
computes the {Recall, F — measure} score according to the
retrieved items within a Hamming ball of radius 2 to the query.

As there is no label information considered within the
proposed hashing methods, it is more sensible to directly eval-
uate the quality of preserved nearest neighbors after hashing
projection. Hence, we propose to compute the average distance
(in the Euclidean space) of the original data that corresponds
to the top-k retrieved items. The better preserved neighbors
will take a smaller distance value.

C. Comparison Experiments

The proposed three methods aim to deal with different
problems of spectral hashing, hence it is expected to evaluate
the improved performance by comparing them with specific
methods accordingly. Firstly, as the spectral hashing methods
(i.e., SH, AGH-1, and AGH-2) just treat the candidate spectral
solution as the final ones, we compare them with SHSR to val-
idate the effectiveness of spectral rotation. Then, the two-stage
hashing methods of ITQ, Scalable Graph Hashing (SGH) [30],
and IMH (IMH-tSNE) are chosen for comparing with the
proposed one-stage method of ADSH. As for the united frame-
work of DSH, the state-of-the-art spectral hashing methods
of DGH and RDSH are included, and the deep unsupervised
hashing of BA is also considered. Note that, these methods
not only cover the spectral-based approaches, but also other
learning-to-hash algorithms. We follow the common parameter
setting of m = 300 and s = 3 [11], [20].We find that o is
not sensitive to different datasets and keep it at 0.1 in all the
experiments.

1) Spectral Rotation: First of all, it is expected to verify
the effectiveness of Spectral Rotation (SR). Hence, we simply
perform the rotation technique with the spectral solution of
AGH [19]. Concretely, as AGH directly binarizes the real-
valued solution via zero, it is fair to perform the same
operation within SHSR. To this end, the second constraint in
Eq. 5 is not considered any more and the sign function is
directly performed over FQ instead of Eq. 8 for updating B,
which is named as AGH + SR. Table IV shows the comparison
results in MAP, where multiple code lengths are considered. It
is obvious that AGH + SR enjoys a noticeable improvement
over AGH on both datasets. This is because SR transforms
the embedded points into proper positions where the spectral
solutions better approximate the discrete codes, as shown
in Fig. 1. To make the codes more efficient [18], the balanced
constraint is reconsidered, which actually leads to the SHSR
objective, i.e., Eq. 5. In Table IV, SHSR shows better results
than AGH but just comparable to AGH + SR after introducing
the constraint. In some conditions, SHSR performs even worse
than AGH + SR, such as SHSR @ 32 bits and 64 bits on
CIFAR-10. As the only difference between AGH + SR and
SHSR is the balanced constraint, the reason is probably that
the revised spectral solution via SR has provided efficient
manifold representation, so the balanced constraint may be
not necessary for spectral hashing in such cases.

HU et al.: DSH FOR EFFICIENT SIMILARITY RETRIEVAL

1087

TABLE 1I
HAMMING RANKING PERFORMANCE (IN MAP) ON MNIST AND CIFAR-10 DATASET WITH VARYING CODE LENGTHS

Dataset MNIST CIFAR-10

Code Length 8 bits 16 bits 32 bits 64 bits 96 bits 128 bits| 8 bits 16 bits 32 bits 64 bits 96 bits 128 bits
SH [18] 0.2929 0.2730 0.2607 0.2476 0.2498 0.2497 | 0.1438 0.1359 0.1324 0.1326 0.1298 0.1313
AGH-1 [19] 0.5205 0.5494 0.4431 03567 0.3229 03008 | 0.1966 0.1897 0.1927 0.1918 0.1832 0.1893
AGH-2 [19] 0.5601 0.6058 0.6447 0.6122 0.5846 0.5681 0.2103 0.1966 0.1897 0.1927 0.1900 0.1918
SHSR 0.5862 0.6418 0.6891 0.6611 0.6456 0.6401 | 0.2121 0.2094 0.2010 0.2029 0.1962 0.1988
ITQ [14] 0.3854 0.4025 0.4325 04451 04580 04598 | 0.1680 0.1709 0.1753 0.1813 0.1847 0.1864
SGH [30] 0.1075 0.1058 0.1067 0.1142 0.1250 0.1356 | 0.1411 0.1477 0.1457 0.1429 0.1434 0.1454
IMH [20] 0.5389 0.5309 04771 04390 0.4066 0.3853 | 0.1862 0.1743 0.1821 0.1859 0.1819 0.1869
ADSH 0.5896 0.6085 0.6484 0.6751 0.6483 0.6597 | 0.2012 0.1934 0.1896 0.1957 0.1983 0.1987
BA [16] 0.5871 0.6500 0.7031 0.7354 0.7585 0.7597 | 0.1558 0.1610 0.1712 0.1749 0.1830 0.1847
RDSH [25] 0.3917 0.4047 0.4407 04522 04583 04660 | 0.1693 0.1711 0.1754 0.1830 0.1873 0.1889
DGH [11] 0.5998 0.6100 0.5785 0.5414 0.5544 0.5555 | 0.2027 0.2000 0.2024 0.2001 0.1964 0.1918
DSH 0.6011 0.6521 0.6704 0.6294 0.6605 0.6185 | 0.2122 0.2142 0.2116 0.2063 0.1971 0.2030

TABLE III

HAMMING RANKING PERFORMANCE (IN MAP) ON YOUTUBE FACES AND NUS-WIDE DATASET WITH VARYING CODE LENGTHS

Dataset YouTube Faces NUS-WIDE

Code Length 8 bits 16 bits 32 bits 64 bits 96 bits 128 bits| 8 bits 16 bits 32 bits 64 bits 96 bits 128 bits
SH [18] 0.1355 03131 0.5030 0.5951 0.6136 0.6127 | 0.2505 0.2505 0.2509 0.2521 0.2570 0.2574
AGH-1 [19] 0.1273 0.2248 0.4498 0.5656 0.5902 0.5932 | 0.2503 0.2515 0.2574 0.2827 0.2802 0.2776
AGH-2 [19] 0.1304 0.1662 0.3046 0.5200 0.5654 0.5922 | 0.2520 0.2544 0.2559 0.2713 0.2765 0.2784
SHSR 0.1601 0.2963 0.4634 0.6163 0.6501 0.6551 | 0.2584 0.2603 0.2788 0.2838 0.2861 0.2847
ITQ [14] 0.1972 0.4402 0.6048 0.6647 0.6799 0.6911 | 0.2580 0.2727 02791 0.2704 0.2714 0.2721
SGH [30] 0.0877 0.2602 0.4101 0.5217 0.5661 0.5698 | 0.2590 0.2583 0.2589 0.2600 0.2613 0.2617
IMH [20] 0.0764 0.1259 0.1733 0.2553 0.2739 0.2934 | 0.2509 0.2511 0.2515 0.2525 0.2553 0.2553
ADSH 0.1224 0.4427 0.6328 0.7366 0.7477 0.7604 | 0.2775 0.2819 0.2839 0.2848 0.2876 0.2857
BA [16] 0.2313 0.4918 0.6166 0.6713 0.6833 0.6894 | 0.2797 0.2883 0.2930 0.2952 0.2949 0.2928
RDSH [25] 0.2005 0.4468 0.6142 0.6691 0.6842 0.6994 | 0.2587 0.2771 0.2823 0.2753 0.2735 0.2759
DGH [11] 0.2131 04591 0.6302 0.6517 0.6672 0.6805 | 0.2672 0.2731 0.2750 0.2754 0.2759 0.2747
DSH 0.2334 0.4465 0.6848 0.7207 0.7528 0.7605 | 0.2834 0.2921 0.2954 0.2938 0.2962 0.3045

TABLE IV

COMPARISON AMONG AGH, AGH WITH SR, AND SHSR
ON CIFAR-10 AND NUS-WIDE DATASET

Dataset Methods 12 16 24 32 64
AGH 18.63 18.97 19.28 19.27 19.18
CIFAR-10 AGH+SR | 20.99 2092 20.53 20.84 20.80
SHSR 2099 2094 20.54 20.10 20.29
AGH 25.04 25.15 2547 2574 28.29
NUS-WIDE | AGH+SR | 2548 2557 2599 27.64 28.38
SHSR 25.61 26.03 27.02 2788 2838

The front part of Table II and Table III show the detailed
comparison results for SR in Hamming ranking. Notice that
AGH-2 is a hierarchical hashing scheme based on the graph
Laplacian eigenvectors of AGH-1. Obviously, SHSR has a
remarkable improvement of 4 and 7 points on § and 16 bits,
and ~30 points on other bits over the baseline method
of AGH-1, and 2~8 points over AGH-2 on MNIST. By
comparing AGH with SH, it is easy to find that the neigh-
borhood graph not only accelerates the graph building, but
also improves the retrieval performance, as these graph-based

methods focus on the nearest anchors. And the special cases
on YouTube Faces are because of the out-of-sample strategy,
which will be discussed in the following section.

The hash lookup results in F-meassure and Recall are pro-
vided in Fig. 2 and Fig. 3. We can see that SHSR outperforms
the other methods with almost all the code lengths, especially
on the F-meassure metric. When the code becomes longer,
all the methods do not hold the high performance, including
SHSR. Such phenomenon could come from two reasons. First,
Shi and Malik [37] consider that the discrete solution is
obtained by converting the real-valued spectral solution, so that
the quantization error could accumulate with the increasing
codes. Although AGH-2 proposes to give more priority to the
lower eigenvectors, it also badly suffers from such problem.
Second, the longer codes result in sparser hamming space.
Hence, there will be less embedding points falling into the
hamming ball when the number of samples is fixed. In other
words, the hamming distance between nearby embedding
points are enlarged relatively, which results in the declining
hash lookup performance. Even so, SHSR still performs better
than the other ones, especially on the YouTube Faces dataset.

2) Alternating Discrete Spectral Hashing: The hashing
ranking performance in MAP on the four datasets are shown

1088

Hashing on MNIST Hashing on CIFAR-10

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 3, MARCH 2019

Hashing on YouTube Faces Hashing on NUS-WIDE

——H

—8— sHsR

015

F-measure
F-measure

F-measure
F-measure

81216 24 32 48 64 9% 128
Code length
Hashing on MNIST

81216 24 32 48 64 % 128
Code length
Hashing on CIFAR-10

8126 24 32 48 64 % 128
Code length

81216 24 32 48 64 % 128

Hashing on YouTube Faces Hashing on NUS-WIDE

F-measure

81216 24 32 48 64 % 128
Code length
Hashing on CIFAR-10

s126 24 32 48 64 % 128
Code length
Hashing on MNIST

F-measure

81216 24 32 48 64 % 128
Code length

Hashing on NUS-WIDE

e <
81216 24 32 48 64 % 128
Code length
Hashing on YouTube Faces

F-measure

81216 24 32 48 64 9% 128
Code length

81216 24 32 48 64 % 128

Code length

Fig. 2.

in the middle part of Table II and Table III. It is clear
to find that our method outperforms almost all the other
three methods. And there are three points we should pay
attention to. First, ITQ with the relaxation strategy almost
always performs better than SGH and IMH which adopt the
binarization approach. It confirms the necessity of directly
solving the binary codes to some extent. Second, the spectral-
based method of IMH decreases sharply with the increasing
code length on MNIST, which results from the increasing error
caused by the rounding operation and sparser hamming space.
By contrast, ADSH shows an increasing MAP score. Third,
although it is hard to theoretically guarantee the convergence
of ADSH, the binary codes generated by ADSH better preserve
the neighborhood structure compared with other methods.
Such performance benefits from the effective code learning
in the discrete space and confirms the ability of ADSH in
practice.

Fig. 2 and Fig. 3 show the comparison results in
F-measure and Recall, and ADSH shows noticeable perfor-
mance compared with other methods on the four datasets.
IMH achieves nice result on NUS-WIDE, which could benefit
from the advantages of t-SNE in preserving local structures of
multi-label data, but it is lower than ADSH when the codes
become longer. Besides, ITQ and SGH have an significant

0
81216 24 32 48 64 % 128
Code length

81216 24 322 48 64 9% 128
Code length

Hash lookup performance (in F-measure) on MNIST, CIFAR-10, YouTube Faces and NUS-WIDE with varying code lengths.

decrease on the YouTube Faces dataset when faced with longer
codes, while ADSH shows a rapid growth and then remains a
high performance that is superior over the others, which also
confirms the effectiveness of ADSH in practice.

3) Discrete Spectral Hashing: As the most similar works to
DSH are DGH and RDSH, they are chosen for comparison,
and the deep hashing of BA is also considered. The iteration
numbers of GPI and the DSH, i.e., Ng and N, are set to 30.
The Hamming ranking performance is shown in Table II and
Table III. We can find that DSH shows the best performance in
the most conditions. More precisely, DSH achieves noticeable
improvements over the state-of-art spectral method of RDSH
and DGH on all the datasets, but worse than BA on the MNIST
dataset. This is because DSH directly executes the code
constraints on the hashing codes, which are actually performed
in the discrete space, while RDSH neglects these constraints
and DGH chooses to perform the constraints over the real-
valued solution instead of the discrete codes. Hence, DSH
could learn more efficient codes. Different from these spectral-
based methods, BA utilizes the ability of deep networks in the
nonlinear modeling to encode the features, which aims to seek
the semantic embedding of hashing codes [17]. Hence, BA can
effectively encode the original features into efficient binary
codes under the simple data distribution of MNIST. While for

HU et al.: DSH FOR EFFICIENT SIMILARITY RETRIEVAL

Hashing on MNIST Hashing on CIFAR-10

1089

Hashing on YouTube Faces Hashing on NUS-WIDE

—
AGH1

Recall

i

81216 24 32 48 64 % 128 8126 24 32 48 64 % 128 8126 24 32 48 64 % 128 81216 24 32 48 64 % 128
Code length Code length Code length Code length
0 Hashing on MNIST o Hashing on CIFAR-10 . Hashing on YouTube Faces Hashing on NUS-WIDE
08 09
06
08
07
05 07
06
06
_os o4 -
S Kl Sos
& & E
04 03
04
03
02 03
02 02
o1
0.1 01
L * [N o > < - -
81216 24 32 48 64 % 128 81216 24 32 48 64 % 128 81216 24 32 48 64 % 128 81216 24 32 48 64 % 128
Code length Code length Code length Code length
o Hashing on MNIST o Hashing on CIFAR-10 , Hashing on YouTube Faces Hashing on NUS-WIDE

\

64
Code length

81216 24 32 48 % 128 81216 24 32 48

128

p
Code length
Fig. 3.

Hashing on CIFAR-10 Hashing on CIFAR-10

Recall

%

81216 24 32 48 128

64
Code length Code length

Hash lookup performance (in Recall) on MNIST, CIFAR-10, YouTube Faces and NUS-WIDE with varying code lengths.

Hashing on CIFAR-10 Hashing on CIFAR-10

Average Euc-distance@top100
Average Euc-distance@top100

084

Average Euc-distance@top100
f/;"
28
Average Euc-distance@top100

81216 24 32 48 64

Code length

81216 24 32 48 64

Code length

128

Fig. 4. The average Euclidean distance (in the original feature

the other three datasets, our proposed DSH shows stronger
ability in encoding data under more complex distribution.
The hash lookup results in F-measure and Recall are plotted
in the bottom of Fig. 2 and Fig. 3, respectively. It is obviously
that DSH shows the best performance over the other three
methods, especially BA. To be specific, there are two points
we should pay attention to. First, different from the situation
in Hamming ranking, DSH shows remarkable improvement
over BA on the lookup metric, which indicates that DSH
can provide more exact results within the top retrieved items.
Second, different from the previous results, DSH avoids the
situation of decreasing performance to some extent, such as

81216 24 32 48 64

Code length

% 81216 24 32 48 64

Code length

space) of the top-100 retrieved items with different code lengths.

the F-measure score on MNIST. This is because DSH contains
both the advantages of SHSR and ADSH, that is to say,
DSH can directly seek for the discrete spectral solution under
efficient constraints in the hamming space.

D. Neighborhood Evaluation

To evaluate the quality of generated codes in preserving the
neighborhood structure precisely, Fig. 4 shows the average
Euclidean distance of the top-100 retrieved items in the
original feature space (lower is better). It is obvious that
these results are slightly different from F-measure and MAP.

1090

TABLE V
THE PARAMETER SENSITIVITY ANALYSIS ABOUT a OF DSH

Dataset 0.001 0.01 0.1 1 10 100
MNIST 59.52 6370 6294 65.62 5831 57.28
CIFAR-10 | 20.96 2139 20.63 19.81 19.74 19.79

Specifically, AGH enjoys a good performance on the conven-
tional metric while suffers from poor results in Fig. 4, similar
for IMH and DGH. This is because the average distance
is computed from only one hundred nearest items, instead
of thousands of images with the same label. Under such
evaluation metrics, our proposed methods still take the top two
best performance, and only a litter worse than the deep method
of BA. In the right-most of Fig.4, DSH almost always shows
the best performance among the three proposed methods,
which actually confirms its effectiveness in preserving the
neighborhood structure when performing hashing projection.
Note that, similar with other methods (i.e., SH, IMH, and
AGH), our method assumes that there is a low-dimensional
manifold structure among the training data. If the data struc-
ture does not meet the manifold assumption, our method may
be inferior to other non-spectral methods, such as BA.

E. Parameter Sensitivity

As mentioned in Sec.V, DSH is an integrated framework
of the spectral rotation in SHSR and discrete code learning in
ADSH, hence it involves an hyper-parameter of & who controls
the importance of the spectral rotation and quantization term.
In fact, SHSR and ADSH are the special cases of DSH when
o approaches zero or positive infinity, respectively. As the
performance of these two proposed methods are comparable
to DSH as shown above, the value of a has limited effects on
the final hashing codes. Even so, we still perform a parameter
analysis about it on the MNIST and CIFAR-10 dataset. Table.
V shows the Hamming ranking performance @64 bits codes.
Obviously, DSH is not very sensitive to the value of o on
both datasets. Specifically, When a becomes smaller (e.g., 1 to
0.001 on MNIST), DSH tends to solve the relaxed spectral
objective but pay few attention on the quantization with
rigorous constraints, hence the generated codes become low
efficient. When o becomes larger (e.g., 1 to 100 on MNIST),
DSH emphasizes more on the discrete codes learning and
the spectral solution could be quickly transformed into binary
value. However, such practice could result in poor spectral
solution, which finally leads to the declining performance.
Even so, DSH still enjoys the bilateral merits from SHSR and
ADSH and has superiorities over other methods.

F. Efficient Out-of-Sample Methods

By comparing the out-of-sample methods of SHSR, ADSH,
and DSH, we can find that SHSR takes the distinctive real-
valued solution of the training set instead of the binary ones.
This is because the direct binarization could result in roughly
approximated hashing codes within the conventional two-stage
hashing method, i.e., AGH, IMH. Hence, they usually choose
the real-valued spectral solution, and it is fair to employ the

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 3, MARCH 2019

TABLE VI

THE COMPARISON RESULTS ABOUT THE OUT-OF-SAMPLE
STRATEGIES OF THE SHSR METHOD

Dataset Methods 8 24 32 48 64
CIFAR-10 SHSR 21.22 20.54 20.10 20.24 20.29
SHSR-B 21.23 20.51 19.89 20.33 20.19
YouTube- SHSR 16.01 3896 4634 56.14 61.63
-Faces SHSR-B 1642 4389 5236 59.80 63.20

same strategy for SHSR. However, to further evaluate the per-
formance of SHSR when employing the discrete codes instead,
we perform the following comparison. The experiments are
conducted on CIFAR-10 and YouTube Faces dataset. The
results in MAP are shown in Table. VI, where SHSR stands
for the original real-valued method and SHSR-B represents
the binary strategy. It is clear that SHSR-B is comparable
with SHSR on CIFAR-10, but much better on YouTube Faces.
Such phenomenon indicates that the minimized quantization
term with spectral rotation (i.e., Eq. 8) indeed helps to learn
more efficient discrete codes, especially when faced with more
categories and more data. Hence, it is recommended to use the
discrete solution of Eq. 8 for the hashing codes generation of
testing data in SHSR.

VII. CONCLUSION

In this paper, we mainly focus on two conventional prob-
lems of spectral hashing, one is the poor spectral candidate,
and the other is the intractable binary constraint. To facilitate
the spectral hashing to overcome the above problems, we pro-
vide two specific solutions for them. First, we propose to seek
better spectral solution by introducing the spectral rotation
technique into the quantization error, which constitutes a
two-stage spectral-based hashing method, called SHSR. By
comparing with the original spectral solution, SHSR shows
noticeable improvement on different evaluation metrics.
Second, we propose to directly optimize the original objective
function under the binary constraint. To do so, two constraint
sets are constructed and a sequence of projections are alter-
nately performed on them within the reweighted framework,
which is named as ADSH. The experimental results show
that ADSH can learn more efficient codes than the two-stage
methods. Third, to integrate the merits of above methods,
we finally propose DSH that considers both of spectral rotation
and discrete codes learning and can be efficiently optimized
by existing methods. Extensive experiments on four large-scale
datasets demonstrate that DSH can generate efficient compact
codes within comparable time complexity.

APPENDIX
Theorem 2: Q = VU! is the optimal solution to the
given objective function in Eq. 9, where U and V are the
left and right singular vectors of the compact Singular Value
Decomposition (SVD) of G.
Proof: Suppose that the SVD of G is G = UXV’ for
arbitrary B, then Eq. 9 can be re-written as

Tr (GQ) = Tr (UszQ) (25)
= Tr (VTQUZ) (26)
— Tr(I'Y), 27)

HU et al.: DSH FOR EFFICIENT SIMILARITY RETRIEVAL

where T' = VI QU. Suppose that {z; J*_, and {g;}7_, are the
singular values of I' and X, respectively. Meanwhile, due to
I'’T = 1, the singular value z; = 1. Then, by using the von
Neumann’s trace inequality [38], Eq. 25 becomes

p
Tr(TT) <> o (28)
i=1
The equality holds when I = I, which derives
Q=Vvu’. (29)
This completes our proof. [|
REFERENCES

[1] R. Yang, Y. Shi, and X.-S. Xu, “Discrete multi-view hashing for effective
image retrieval,” in Proc. ACM Int. Conf. Multimedia Retr., 2017,
pp. 175-183.

[2] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg,
“Feature hashing for large scale multitask learning,” in Proc. 26th Annu.
Int. Conf. Mach. Learn., 2009, pp. 1113-1120.

[3] Y. Luo, Y. Yang, F. Shen, Z. Huang, P. Zhou, and H. T. Shen, “Robust
discrete code modeling for supervised hashing,” Pattern Recognit.,
vol. 75, pp. 128-135, Mar. 2018.

[4] Y. Gong, S. Kumar, H. A. Rowley, and S. Lazebnik, “Learning binary
codes for high-dimensional data using bilinear projections,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2013, pp. 484-491.

[5] S. Korman and S. Avidan, “Coherency sensitive hashing,” in Proc. Int.
Conf. Comput. Vis., Nov. 2011, pp. 1607-1614.

[6] J. Wang, W. Liu, S. Kumar, and S.-F. Chang, “Learning to hash for
indexing big data—A survey,” Proc. IEEE, vol. 104, no. 1, pp. 34-57,
Jan. 2016.

[7]1 A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approx-
imate nearest neighbor in high dimensions,” in Proc. 47th Annu. IEEE
Symp. Found. Comput. Sci. (FOCS), Oct. 2006, pp. 459-468.

[8] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” in Proc. 29th Annu.
Symp. Comput. Geometry, 2004, pp. 253-262.

[91 M. S. Charikar, “Similarity estimation techniques from rounding algo-
rithms,” in Proc. 34th Annu. ACM Symp. Theory Comput., 2002,
pp- 380-388.

[10] B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 34, no. 6, pp. 1092-1104,
Jun. 2012.

[11] W. Liu, C. Mu, S. Kumar, and S.-F. Chang, “Discrete graph hashing,”
in Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 3419-3427.

[12] J. Wang, T. Zhang, J. Song, N. Sebe, and H. T. Shen, “A survey on
learning to hash,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4,
pp. 769-790, Apr. 2018.

[13] A. Andoni and I. Razenshteyn, “Optimal data-dependent hashing for
approximate near neighbors,” in Proc. 47th Annu. ACM Symp. Theory
Comput., 2015, pp. 793-801.

[14] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative quanti-
zation: A procrustean approach to learning binary codes for large-scale
image retrieval,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 12,
pp. 2916-2929, Dec. 2013.

[15] W. Kong and W.-J. Li, “Isotropic hashing,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1646—1654.

[16] M. A. Carreira-Perpinan and R. Raziperchikolaei, “Hashing with binary
autoencoders,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2015, pp. 557-566.

[17] R. Salakhutdinov and G. Hinton, “Semantic hashing,” Int. J. Approx.
Reasoning, vol. 50, no. 7, pp. 969-978, Jul. 2009.

[18] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Proc. Adv.
Neural Inf. Process. Syst., 2009, pp. 1753-1760.

[19] W. Liu, J. Wang, S. Kumar, and S.-F. Chang, “Hashing with graphs,” in
Proc. 28th Int. Conf. Mach. Learn. (ICML), 2011, pp. 1-8.

[20] F. Shen, C. Shen, Q. Shi, A. van den Hengel, and Z. Tang, “Inductive
hashing on manifolds,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2013, pp. 1562-1569.

[21] M. Hu, Y. Yang, F. Shen, N. Xie, and H. T. Shen, “Hashing with angular
reconstructive embeddings,” IEEE Trans. Image Process., vol. 27, no. 2,
pp. 545-555, Feb. 2018.

1091

[22] X. Li, D. Hu, and F. Nie, “Large graph hashing with spectral rotation,”
in Proc. AAAI Conf. Artif. Intell., 2017, pp. 2203-2209.

[23] F. R. K. Chung, Spectral Graph Theory, vol. 92. Providence, RI, USA:
AMS, 1997.

[24] W. Liu, J. He, and S.-F. Chang, “Large graph construction for scalable
semi-supervised learning,” in Proc. 27th Int. Conf. Mach. Learn. (ICML),
2010, pp. 679-686.

[25] Y. Yang, F. Shen, H. T. Shen, H. Li, and X. Li, “Robust discrete spectral
hashing for large-scale image semantic indexing,” IEEE Trans. Big Data,
vol. 1, no. 4, pp. 162-171, Dec. 2015.

[26] F. Nie, X. Wang, and H. Huang, “Multiclass capped ¢ ,-Norm SVM for
robust classifications,” in Proc. 31st AAAI Conf. Artif. Intell. (AAAI),
San Francisco, CA, USA, 2017, pp. 2415-2421.

[27] R. Escalante and M. Raydan, Alternating Projection Methods.
Philadelphia, PA, USA: SIAM, 2011.

[28] T. E. Booth, “Power iteration method for the several largest eigenvalues
and eigenfunctions,” Nucl. Sci. Eng., vol. 154, no. 1, pp. 48-62, 2006.

[29] F. Nie, R. Zhang, and X. Li. (2017). “A generalized power iteration
method for solving quadratic problem on the Stiefel manifold.” [Online].
Available: https://arxiv.org/abs/1701.00381

[30] Q.-Y. Jiang and W.-J. Li, “Scalable graph hashing with feature transfor-
mation,” in Proc. IJCAI, 2015, pp. 2248-2254.

[31] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278-2324, Nov. 1998.

[32] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Univ. Toronto, Toronto, Canada, Tech. Rep., 2009, vol. 1,
no. 4, p. 7.

[33] L. Wolf, T. Hassner, and I. Maoz, “Face recognition in unconstrained
videos with matched background similarity,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2011, pp. 529-534.

[34] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng, “NUS-
WIDE: A real-world Web image database from National University of
Singapore,” in Proc. ACM Conf. Image Video Retr. (CIVR), Santorini,
Greece, 2009, Art. no. 48.

[35] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic
representation of the spatial envelope,” Int. J. Comput. Vis., vol. 42,
no. 3, pp. 145-175, 2001.

[36] T. Ahonen, A. Hadid, and M. Pietikdinen, “Face description with local
binary patterns: Application to face recognition,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 28, no. 12, pp. 2037-2041, Dec. 2006.

[37]1 J. Shi and J. Malik, “Normalized cuts and image segmentation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888-905,
Aug. 2000.

[38] L. Mirsky, “A trace inequality of John von Neumann,” Monatshefte
SfurMath., vol. 79, no. 4, pp. 303-306, 1975.

Di Hu is currently pursuing the Ph.D. degree with Northwestern Polytechnical
University, under the supervision of F. Nie and X. Li. He mainly focuses on
multimodal machine learning and relevant applications, such as audiovisual
understanding, cross-modal retrieval, and hashing. He has published several
papers in top conferences, such as the CVPR, ICCV, AAAI, and ACM MM.
He has served as a PC Member for the AAAI, CVPR, and ACCV.

Feiping Nie received the Ph.D. degree in computer science from Tsinghua
University, China, in 2009. He is currently a Full Professor with Northwestern
Polytechnical University, China. His research interests are machine learning
and its applications, such as pattern recognition, data mining, computer vision,
image processing, and information retrieval. He has published over 100 papers
in journals and conferences such as the TPAMI, 1IJCV, TIP, TNNLS, TKDE,
ICML, NIPS, KDD, IICAI, AAAIL ICCV, CVPR, and ACM MM. His papers
have been cited over 10000 times and the H-index is 53. He is currently
serving as an associate editor or PC member for several prestigious journals
and conferences in the related fields.

Xuelong Li (M’02-SM’07-F’12) is currently a Full Professor with the Xi’an
Institute of Optics and Precision Mechanics, Chinese Academy of Sciences,
Xi’an, China.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

