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1. Approximated Maximization Function
Although the maximization function is not differen-

tiable, it can be approximated via the following equation,

max {di1, di2, ..., dik} ≈ lim
z→+∞

1

z
log

 k∑
j=1

edijz

 , (1)

where z is a hype-parameter that controls the precision of
approximation. Instead of the above multi-variable case,
we first consider the maximization function of two variables
{x1, x2}. Actually, it is well known that

max {x1, x2} = 1
2 (|x1 + x2|+ |x1 − x2|) ,

s.t. x1 ≥ 0, x2 ≥ 0,
(2)

Hence the approximation for maximization is turned for
the absolute value function f (x) = |x|. As the deriva-

tive function of f (x) is f ′ (x) =

{
+1, x ≥ 0
−1, x < 0

, it can

be directly replaced by the adaptive tanh function [6], i.e.,
f ′ (x) = lim

z→+∞
ezx−e−zx

ezx+e−zx . Then, we can obtain the approx-

imated absolute value function via integral

f (x) = lim
z→+∞

1

z
log
(
ezx + e−zx

)
. (3)

Hence, the maximization function over two variables can be
written as

max {x1, x2}
= lim

z→+∞
1
2z log

(
e2zx1 + e2zx2 + e−2zx1 + e−2zx2

)
.

(4)
As z → +∞ and x1 ≥ 0, x2 ≥ 0, Eq. 4 can be approxi-

mated into

max {x1, x2} ≈ lim
z→+∞

1

z
log (ezx1 + ezx2) . (5)

At this point, the maximization function has become dif-
ferentiable for two variables. And it can also be extend-
ed to three more variables. Concretely, for three variables
{x1, x2, x3}, let c = max {x1, x2}, then

max {x1, x2, x3} = max {c, x3}
≈ lim

z→+∞
1
z log

(
elog(e

zx1+ezx2 ) + ezx3
)

= lim
z→+∞

1
z log (e

zx1 + ezx2 + ezx3) .

(6)

Hence, for multivariable, we can have

max {x1, x2, ..., xn} ≈ lim
z→+∞

1

z
log

(
p∑

i=1

ezxi

)
. (7)

2. Derivation of Eq. 6

To substitute dij = −
〈
ui,

cj
‖cj‖

〉
into

p∑
i=1

sij
∂dij

∂cj
= 0,

we first give the derivative of dij w.r.t. cj ,

∂dij
∂cj

= −
∂
(

uT
i cj
‖cj‖

)
∂cj

= − ui
‖cj‖

+ uTi cj ·
cj

‖cj‖3
. (8)

Then, by taking Eq. 8 into
p∑

i=1

sij
∂dij

∂cj
= 0, we can have

p∑
i=1

sij
uTi cj
‖cj‖

· cj
‖cj‖

=

p∑
i=1

sijui. (9)

By taking the modulus of expression in both sides of Eq. 9,
we can have∥∥∥∥∥

p∑
i=1

sij
uTi cj
‖cj‖

∥∥∥∥∥ ·
∥∥∥∥ cj
‖cj‖

∥∥∥∥ =

∥∥∥∥∥
p∑

i=1

sijui

∥∥∥∥∥ . (10)

As
∥∥∥ cj
‖cj‖

∥∥∥=1, Eq. 10 becomes

∥∥∥∥∥
p∑

i=1

sijui

∥∥∥∥∥=
∥∥∥∥∥∥∥∥

p∑
i=1

siju
T
i · cj

‖cj‖

∥∥∥∥∥∥∥∥=
∥∥∥∥∥

p∑
i=1

sijui

∥∥∥∥∥ |cos θ|
(11)

As dij = −
〈
ui,

cj
‖cj‖

〉
, we expect to maximize the

cosine proximity between these two vectors, i.e., θ = 0.

Hence,
p∑

i=1

sijui and cj should lie in the same direction,

i.e.,

cj
‖cj‖

=

p∑
i=1

sijui∥∥∥∥ p∑
i=1

sijui

∥∥∥∥ . (12)
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3. Connection to Capsule
Capsule net is first proposed in [3] then developed in [9].

It aims to represent the various properties of a given enti-
ty by the activations of an active capsule, which is similar
with our model that describes the audiovisual components
via different clusters. Further, we can also view the capsule
as another kind of cluster center for the audiovisual descrip-
tion.

However, there exist some key differences between the
capsule net and our model. First, our model does not con-
tain the “squashing” function that shrinks the length of cap-
sule vector for representing the possibility. In contrast, the
cluster in our model represents a kind of soft assignment
over the input features, which is then used for cross-modal
comparison. Second, our task is to identify the correspon-
dence between the audio and visual messages in the uncon-
strained scene instead of the unimodal classification task
in [9]. Hence, we employ different training methods in the
multimodal cases. And the multimodal clustering module
is also the distinct property that aims to capture the corre-
spondence between modalities.

4. Audio Feature Evaluation
For the evaluation of audio features, we provide more

experimental results on a different acoustic classification
dataset, i.e., DCASE2014 [10]. DCASE2014 focuses on
natural scenes sounds. It contains 10 acoustic scenes of 20
samples each and each sample is 30 seconds long. The 20
samples of the same scene are equally partitioned for train-
ing and testing. The same experimental setup as [2, 1] is
employed, where 60 subclips of 5s long are excerpted for
each sample. Mean accuracy of the 10 scenes is measured
for evaluation. The same extraction and classification strat-
egy as the ESC-50 dataset is employed. And Table 1 shows
the results in mAP. Similar with the results on ESC-50, DM-
C and ‡DMC enjoy the top-two score among these compar-
ison methods, which confirms the effectiveness of modality
clustering and elaborate correspondence learning.
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