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Cross-Modal Hashing

Di Hu , Feiping Nie , Member, IEEE, and Xuelong Li , Fellow, IEEE

Abstract—To satisfy the huge storage space and organization
capacity requirements in addressing big multimodal data,
hashing techniques have been widely employed to learn
binary representations in cross-modal retrieval tasks. However,
optimizing the hashing objective under the necessary binary
constraint is truly a difficult problem. A common strategy is to
relax the constraint and perform individual binarizations over
the learned real-valued representations. In this paper, in contrast
to conventional two-stage methods, we propose to directly learn
the binary codes, where the model can be easily optimized by
a standard gradient descent optimizer. However, before that,
we present a theoretical guarantee of the effectiveness of the
multimodal network in preserving the inter- and intra-modal
consistencies. Based on this guarantee, a novel multimodal deep
binary reconstruction model is proposed, which can be trained to
simultaneously model the correlation across modalities and learn
the binary hashing codes. To generate binary codes and to avoid
the tiny gradient problem, a novel activation function first scales
the input activations to suitable scopes and, then, feeds them to
the tanh function to build the hashing layer. Such a composite
function is named adaptive tanh. Both linear and nonlinear scaling
methods are proposed and shown to generate efficient codes after
training the network. Extensive ablation studies and comparison
experiments are conducted for the image2text and text2image
retrieval tasks; the method is found to outperform several state-of-
the-art deep-learning methods with respect to different evaluation
metrics.

Index Terms—Cross-modal hashing, binary reconstruction.

I. INTRODUCTION

EACH modality can provide a unique way to describe the
external environment while efficiently conveying percep-

tual information such as colorful images in vision, beautiful
melody in sound, and elaborate descriptions in text. However,
when these modalities focus on the same content, the different
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generated unimodal information will share the same high-level
semantic or content [1]. For example, the speech signal and lip
movements are coupled when people talk (vision + sound), and
text description is correlated with image content (vision+text).
These shared semantics present opportunities for correlating dif-
ferent modalities, which can then be used in multimodal learn-
ing. The classical multimodal task of audiovisual speech recog-
nition [2], image-text retrieval [1], and affective analysis [3]
utilize the complementary merits of multimodal data, where
different modalities can make up for the limitations of the other
modalities and jointly provide more valuable information than
can the single modality. More works about such combination
can also be found in the multimedia community [4]–[6].

In addition to the above tasks, there remains another direc-
tion that employs shared semantics as the link between dif-
ferent modalities, thereby providing possibilities for retrieving
related items given the query of another modality. A typical
scenario is to retrieve relevant images by a text query or vice
versa [7], [8]. Recently, new types of cross-modal tasks, such as
image2song [9], which attempts to retrieve semantically relevant
songs by analyzing the image content, have emerged. Although
these diverse cross-modal retrieval tasks provide interesting and
effective practical application, they all suffer from the same dis-
advantages in terms of efficiency. Specifically, the image and
text representations generated via deep networks or classical
methods are usually high dimensional and real valued, thereby
requiring huge storage space and computational resources. Such
inefficient retrieval strongly hampers practical usage. Hence, a
type of effective and efficient cross-modal retrieval method must
be developed.

Fortunately, hashing is an efficient technique for addressing
big data, especially in retrieval tasks. More precisely, hash-
ing techniques aim at projecting the original high-dimensional,
real-value data into short, binary codes while preserving the
nearest neighborhood structure of the data points [10]. After
performing the hashing projection, the obtained binary codes
can vastly reduce the storage space requirements. Based on log-
ical operations, we can perform the retrieval in milliseconds or
less. Most hashing methods focus on unimodal retrieval tasks
and relevant applications such as person image retrieval [11],
[12], classification [13], and video retrieval [14], [15]. When
there is more than one modality, the additional inter-correlation
should be considered in the hashing projection. Hence, cross-
modal hashing attempts to simultaneously preserve the intra-
and inter-modal consistency.

Cross-modal hashing was only recently proposed, but it has
become a hot field of study in terms of not only the learning
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methods but also the relevant applications [16], [17]. In contrast
to unimodal hashing, it usually requires different modalities
to be represented in the same subspace; then, nearest neighbor
searching is performed. More specifically, most cross-modal
hashing techniques employ a two-stage framework. Most hash-
ing techniques first generate the real-valued codes in a shared
semantic space as classical cross-modal retrieval methods, and
then, they binarize the real-valued codes of the different modal-
ities [18]–[20]. However, such methods are usually based on the
classical shallow model, where linear projection is a common
selection technique for semantic space learning. Hence, the
nonlinear correlation across modalities cannot be effectively
learned. Fortunately, recent deep networks show a promising
ability for nonlinear modeling, which then would contribute
to effective high-level representation [21]. Hence, some works
choose to learn the common semantic space via a shared
layer across the multi-layer nonlinear projection of different
modalities [22].

However, two open questions remain after applying deep net-
works to the cross-modal hashing problem. First, to the best of
our knowledge, previous multimodal networks [1], [23] only
empirically validate their ability in preserving the intra- and
inter-modal consistency. Wang et al. [24] consider that such
multimodal networks can only preserve the intra-modal corre-
lation. This is unreliable for learning efficient codes with such
empirical verification and discrepant consideration, and theo-
retical analysis is in need. Second, previous networks do not
directly generate the binary hashing codes; they are a simple
combination of conventional cross-modal networks and bina-
rization. Although such a relaxation strategy simplifies the dif-
ficult discrete optimization problem when faced with the binary
constraint, the rough binarization in the second stage could de-
stroy the learned semantic space and result in a sub-optimal
solution.

In this paper, we propose to strongly exploit the ability of
multimodal networks in preserving the nearest neighborhood
structure across modalities.1 To this end, we need to solve the
two aforementioned problems, i.e., utilizing a reliable multi-
modal network to directly encode the hashing codes of differ-
ent modalities instead of the separated binarization procedure.
Therefore, we make the following contributions:

� We theoretically analyze the Multimodal Restricted Boltz-
mann Machine (MRBM) model under the Maximum Like-
lihood Learning (MLL) objective, which is the core unit
of existing multimodal networks. We prove that such unit
has a promising ability for simultaneously preserving the
intra- and inter-consistency across modalities.

� To integrate the classical two-stage method into one unbro-
ken hashing function, we propose a scalable tanh activation
framework, which is named Adaptive Tanh (ATanh). In
contrast to the original tanh function, ATanh is controlled
by a learnable parameter, which can to some extent avoid

1The preliminary version [25] has been accepted by ACM Multimedia 2017.
In addition, the journal version proposes a unified adaptive activation framework,
which extends it to linear and nonlinear conditions. Additional ablation analysis
and experiments are also provided.

the tiny gradient problem when faced with large inputs and
project the inputs into the discrete domain of {−1, 1} after
training. In practice, we propose two implementations of
this learnable function: a linear and nonlinear interpreta-
tion. Both interpretations provide possibilities for directly
generating binary codes, and the constituted hashing layer
can be jointly trained with the whole network.

� Based on the proposed hashing activation function, we
utilize the strong nonlinear modeling abilities of deep
networks and propose to directly learn the binary hash-
ing codes via a multimodal deep reconstruction network,
called Deep Binary Reconstruction (DBRC). Within the
DBRC, the original multimodal data are reconstructed
based on the projected hamming semantic space in an un-
supervised manner. The constituted hashing layer makes
it possible to simultaneously learn the hashing codes and
optimize the deep networks via back-propagation, which
can learn more efficient binary codes than can two-stage
methods.

� Extensive comparison experiments and ablation studies are
conducted on three benchmark datasets. DBRC with the
ATanh function achieves better codes compared to various
cross-modal hashing methods on different metrics, espe-
cially the deep model methods.

We first briefly survey cross-modal hashing methods in
Section II. Then, a theoretical analysis of the MRBM with the
MLL objective is provided in Section III. Section IV introduces
the proposed ATanh hashing activation function and two ex-
tensions, linear and nonlinear. Then, we propose the DBRC
cross-modal hashing framework in Section V. Experiments are
conducted for evaluation in Section VI. Section VII concludes
this paper.

II. RELATED WORK

Cross-modal hashing is similar to the classical retrieval task
except for the binary constraint on the final representation. Be-
cause the discrete constraint makes the models difficult to op-
timize, most unsupervised hashing methods choose to directly
binarize the real-valued representation learned by classical re-
trieval methods. More specifically, such frameworks involve
two steps: First, they project different modalities into a shared
low-dimensional (usually the code length) space. Then, the bina-
rization operation (usually thresholding) is performed over the
projected real-valued vector to obtain binary codes. According
to the projection method, these methods can be categorized into
two groups: classical linear modeling and nonlinear modeling
based on deep networks [22].

A. Classical Linear Modeling

Cross-modal hashing can be viewed as a special case of uni-
modal hashing; hence, some off-the-shelf unimodal methods
can be extended to the cross-modal scenario. To the best of
our knowledge, the first proposed method, Cross-view Hashing
(CVH) [26], extends unimodal spectral hashing (SH) [27] by
appending the Hamming distance across modalities to the orig-
inal spectral objective. Hence, the intra- and inter-correlation
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are both contained in the same Hamming term within this
framework. In addition, Canonical Correlation Analysis (CCA)
[28] performs as a special case of CVH, where the linear pro-
jection with maximized correlation between modalities can be
learned. Further, there exist two new directions with CVH. On
the one hand, in contrast to CVH, Inter-Media Hashing (IMH)
[29] maintains the original SH objective and strengthens the
modal consistency by distinctly learning a tag-semantic sub-
space, therein achieving impressive improvements over CVH.
On the other hand, the orthogonal bases of CCA make it dif-
ficult to encode the proximity of samples. Hence, Predictable
Dual-view Hashing (PDH) [30] proposes to ignore the orthogo-
nal bases and learn more efficient hashing codes in a self-taught
manner.

Apart from the above SH-related hashing methods, there is
another category based on the matrix operation. In contrast to
the subspace projection of CCA, this type of method learns the
latent shared concept via matrix factorization [18], [31]. Col-
lective Matrix Factorization Hashing (CMFH) [31] decomposes
each modality into a modality-specific projection matrix and a
latent semantic matrix while linearly reconstructing the original
modality from the semantic matrix. Xu et al. [32] propose to
learn a modality-specific linear projection and take the projected
codes as the representative features for discriminative learning
with labels. Latent Semantic Sparse Hashing (LSSH) [18] em-
ploys the factorization over the text modality but utilizes sparse
coding to capture the salient structures of images. Then, a shared
matrix is learned to maximally correlate the captured semantic
information of these two modalities. The hashing codes for both
CMFH and LSSH are obtained by applying the sign function
over the shared semantic matrix. Differently, Cross-modal Col-
laborative Quantization (CMCQ) [33] proposes to align the
quantized representations rather than sharing the same codes
across modalities. SM2H [20] interprets the latent concept as
the specific dictionary, where different modalities are correlated
via the dictionary coefficients. To improve the retrieval quality
further, Ding et al. [34] propose to employ the rank-order infor-
mation when projecting the modalities in unified binary codes.
However, all the introduced related work above actually em-
ploys linear projections for learning the shared semantics across
modalities. Such shallow model limits their ability in model-
ing complex nonlinear correlations, but it is exactly what deep
multimodal networks focus on.

B. Deep Nonlinear Modeling

1) Real Valued Representation: Deep networks have
demonstrated their strong nonlinear modeling ability [24], [35],
[36]. Such merits make them effective at learning sufficient
high-level semantics from raw modality data, which can
be applied to various applications of different modalities,
e.g., object detection [37], speech recognition [38], and
text translation [39]. As a result, these unimodal networks
provide possibilities for learning reliable correlations across
modalities. To the best of our knowledge, the Multimodal Deep
Autoencoder (MDAE) [23] is the first method employing deep
networks in multimodal learning. This method utilizes two
separate branches of stacked Restricted Boltzmann Machines

(RBMs) to model audio and image. Then, a shared layer is
performed over the top layers of the branches. Based on the
above structure, MDAE attempts to learn effective joint repre-
sentations across modalities by minimizing the reconstruction
error, therein achieving noticeable performance improvements
in the task of Audiovisual Speech Recognition (AVSR).
Inspired by MDAE, Srivastava et al. [1] propose to extend the
Deep Boltzmann Machine (DBM) [40] into the multimodal
scenario by employing the shared layer structure, which is
named Multimodal DBM (MDBM). In addition, it is the first
multimodal network proposed for retrieval tasks. Recently,
some works have proposed to strengthen the shared semantic
learning within this framework, possibly further improving the
retrieval performance. Sohn et al. [41] aim to reduce the variant
information across modalities, while Hu et al. [42] propose
semantic similarity learning, which attempts to enhance the
similarity between the semantics of different modalities.
However, in the above methods, the shared representations are
all high dimensional and real valued; hence, they require huge
computational resources for comparison during retrieval.

2) Binary Valued Representation: Recently, some works
have proposed to apply the hashing technique to multimodal
networks and transformed the shared representation into short
and binary codes. One intuitive method is to directly binarize
the shared representation after training the network, which is
actually the principal strategy of existing cross-modal hashing
techniques. Wang et al. [24] employ the MDAE network for
cross-modal hashing, where they impose an orthogonal regular-
izer on the weights of MDAE to make the joint representation
more efficient. Differently, Feng et al. [43] and Wang et al. [44]
propose to employ stacked autoencoders for retrieval, therein
minimizing the distance between the high-level features of dif-
ferent modalities to preserve the inter-modal semantic and re-
constructing each modality to maintain the intra-modal consis-
tency. In addition, hashing codes are generated by applying an
indicator function over the joint representation.

Although these methods utilize the advantages of deep net-
works for nonlinear modeling, they fail to consider the distinct
binary constraints of hashing methods when fine tuning the net-
works. The simple combination of a multimodal network and
binarization can destroy the original joint representation and
make the codes inefficient. Although Courbariaux et al. [45]
aim to make the weights and activations binary, their model
still suffers from a difficult optimization process. In contrast to
the aforementioned methods, our model can directly generate
the hashing codes after training the networks; it is also easy to
optimize.

III. MULTIMODAL MAXIMUM LIKELIHOOD LEARNING

To simultaneously preserve the inter- and intra-modal con-
sistency, almost all multimodal deep networks [1], [23], [41]
utilize the Multimodal Restricted Boltzmann Machine (MRBM)
unit. MRBM is a special variant of RBM, which attempts to
maximize the joint likelihood of different modalities. Although
the effectiveness of MRBM in preserving the correlations has
been verified in previous experiments [1], [2], [42], no theoreti-
cal analysis has been provided. Here, we will focus on the latter
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Fig. 1. An illustration of MRBM model.

and theoretically validate the ability of MRBM for cross-modal
learning.

As with the energy-based network of RBM, MRBM is an
undirected graphical model that consists of different modality
layers and one shared hidden layer, as shown in Fig. 1. Based
on the shared hidden units, it attempts to maximize the joint
distribution over different modalities [1]. Concretely, let x, y,
and h denote two modality layers and the hidden layer; then, the
joint distribution over the layers can be written

P (x, y,h) =
1
Z

exp (−E (x, y,h)) , (1)

where Z is the partition function and E is an energy term [1]
given by

E (x, y,h) = −xTWxh − yTWyh

− xTbx − yTby − hTbh , (2)

where Wx is a matrix of pairwise weights between elements
of x and h and similar for Wy . bx , by , and bh are bias vec-
tors for x, y, and h, respectively. Then, the hidden units h can
be marginalized out from the distribution to obtain the joint
likelihood P (x, y) [1]:

P (x, y) =
∑

h

exp (−E(x, y,h))/Z. (3)

To maximize the joint distribution P (x, y), one common strat-
egy is to use Contrastive Divergence (CD) [46] or Persistent
CD (PCD) [47] to approximate the gradient for optimizing the
MRBM and then fine tune it with Stochastic Gradient Descent
(SGD) under supervision. This is the typical Maximum Like-
lihood Learning (MLL) for MRBM. However, when applying
the MLL objective over the current model, what does the model
actually model? Can the MLL objective model the cross-modal
correlation?

To answer the aforementioned questions, we attempt to de-
couple the original objective. Let Pθ (x, y) denote the MRBM
joint distribution parameterized by θ = {W∗,b∗}, and let
PD (x, y) denote the data-generating distribution. The MLL

objective of MRBM can be re-written as follows:

MLL = EPD (x,y) [log Pθ (x, y)] (4)

= EPD (x)
[
EPD (y |x) log Pθ (x)

]
(5)

+ EPD (x)
[
EPD (y |x) log Pθ (y|x)

]
(6)

= −EPD (x)

[
EPD (y |x) log

PD (x)
Pθ (x)

]
(7)

− EPD (x)

[
EPD (y |x) log

PD (y|x)
Pθ (y|x)

]
+ C (8)

= −EPD (x)

[
EPD (y |x) log

PD (y|x)
Pθ (y|x)

]
(9)

− EPD (x)

[
log

PD (x)
Pθ (x)

]
+ C (10)

= −EPD (x) [KL(PD (y|x) ||Pθ (y|x))]
︸ ︷︷ ︸

cross modalities

(11)

− KL(PD (x) ||Pθ (x))︸ ︷︷ ︸
single modality

+C (12)

where the constant C = EPD (x)
[
EPD (y |x) log PD (x)

]
+

EPD (x)
[
EPD (y |x) log PD (y|x)

]
is independent of θ. Note that

the above formula is decoupled w.r.t. modality x, which can
also be re-written w.r.t. y. According to the above equations,
we can find that the MLL objective can be decoupled into two
terms: one related to the Kullback-Leibler (KL) divergence be-
tween the distributions of modality x and the other being the
conditional probability of the cross-modalities under the expec-
tation of PD . Hence, maximizing the joint distribution Pθ (x, y)
under the expectation of PD (x, y) is equal to simultaneously
modeling the unimodal and cross-modal data distribution. In
other words, when minimizing the two terms of the Kullback-
Leibler divergence, MRBM actually learns to preserve both the
intra- and inter-modal consistency. Hence, both the experimen-
tal results and theoretical analysis verify that the multimodal
networks based on MRBM have the ability to satisfy the objec-
tives of cross-modal hashing. Note that the analysis w.r.t. the
multimodal MLL objective does not solely focus on the MRBM
network. Specifically if the properties of the networks meet the
requirements of joint likelihood modeling and conditional inde-
pendence structure, the analysis is also suitable for them.

Moreover, the MLL analysis also provides insights in de-
signing the algorithm and refining the model. For example, to
enhance the shared information across modalities, we can pay
greater attention to the KL term of the conditional probability by
regularizing the similarity across modalities [42] or reduce the
unimodal importance by ignoring the KL term of the marginal
distribution when applying the MLL objective [41].

IV. BINARY ACTIVATION FUNCTION

Although the theoretical analysis confirms the multimodal
learning capacity of MRBM, the joint representation is real val-
ued instead of binary valued. Hence, this multimodal unit is not
completely suitable for cross-modal hashing. In this section, we
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Fig. 2. The comparison among sign, tanh, and ATanh functions. ATanh is
composed of a scaling function and the standard tanh function, which can scale
the inputs into different scopes so that the final tanh takes various patterns.

introduce a hashing layer upon the joint representation, which
can be trained with the whole network and directly generate
binary codes. Such merits come from a novel binary activa-
tion framework, and two practical implementations within the
framework are introduced in the following sections.

A. Adaptive Tanh

A hashing technique requires the codes to be binary,
i.e., {−1, 1}. However, multimodal networks under binary
constraints are difficult to optimize. Hence, most previous
work [24], [44] chose to relax the constraints and separately ap-
plied the sign function over the joint representation after training
the network. For example, the activation value of the tanh func-
tion is binarized via the mask of the sign function.2 However,
numerous activations actually fall into the interval of (−1, 1),
and the resulting quantization error could destroy the learned
multimodal structure [25]. On the other hand, if the activation
is sufficiently large, there will be a very small gradient passed
to the lower layers, which makes it difficult to optimize the
network [48]. These two problems make it difficult to obtain
efficient hashing codes.

Fig. 2 shows a comparison of the sign function and tanh
function. Intuitively, a difference only exists in the transition
interval between −1 and 1. One technique is to scale up the
inputs; then, the tanh function can approach the sign function.
Similarly, the inputs can also be scaled down to reduce the
influence of a small gradient. Hence, we can first employ a
scaling function to transform the inputs to an appropriate scale
and then take it as the new inputs to tanh, as in the example in
Fig. 2. Formally, a composite activation function is proposed for
generating the hashing codes, which is written as follows:

f (s) = tanh(g(s;α)), (13)

where s is the activations of the previous layer and g(s;α) is the
scaling function parameterized by α. The proposed composite
function is named Adaptive Tanh (ATanh), which can be trained
with the whole network.

However, it remains difficult to guarantee that the activations
of ATanh fall into the binary codes after training the deep net-
works. We hope that the inputs are shrunk at the beginning;
then, they are adaptively amplified when training the network.
Finally, ATanh can approach the sign function and generate the

2When the activation function is a sigmoid, there is an offset of −0.5 for the
activation values.

Fig. 3. An illustration of the linear and nonlinear composite function of tanh
(only the first quadrant is shown). The top-left figure is an illustration of the
linear scaling function, and the top-right figure is the corresponding modified
tanh function. When the scaling parameter α decreases, tanh(αs) becomes
closer to the sign function, as is the case for the nonlinear ones in the bottom
two figures.

binary hashing codes. Hence, a regularization term is applied to
the composite function:

f (s) = tanh(g(s;α))+ζ(α), (14)

where ζ(α) is the regularization term providing a convenient
way to control the magnitude of α, which prompts the function
to be closer to the sign function. In practice, the function g(s;α)
can be implemented with respect to the scaling method. In the
following sections, we introduce two different methods that can
be effectively employed for scaling.

B. Linearized ATanh

The simplest and most direct scaling method is linear scal-
ing. According to the zoom coefficient, the transition area of
tanh around zero can be stretched or shrunk. Hence, the scaling
function is written as g(s) =αs; then, Eq. (13) becomes

f(s) = tanh(αs). (15)

The standard tanh function can be viewed as a special case of
Eq. (15) when α = 1. In Fig. 3, the top two figures show different
scaled tanh functions. It is easy to find that the linearized tanh
with larger α is closer to the y-axis. Hence, it is necessary to
enlarge the value of α when training the network. Then, Eq. (14)
becomes

f(s) = tanh(αs) + λ
∥∥α−1

∥∥2
2 , (16)

where λ is a regularization constant. By minimizing the regular-
ization term of

∥∥α−1
∥∥2

2 , α can be gradually increased so that the



978 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 21, NO. 4, APRIL 2019

final activation of f(s) = tanh(αs) approaches the sign func-
tion and has the ability to generate binary codes. In addition, the
linearized ATanh is an element-wise function; thus, different α
can be learned for different bits. In other words, 32 functions
can be simultaneously learned for 32 bits hashing codes, which
makes the codes more adaptable compared with the constant
sign function.

The linearized ATanh can be jointly trained with other layers
via back-propagation. Hence, the partial derivative with respect
to αi can be simply derived by the chain rule:

∂ε

∂αi
=

∂ε

∂f (si)
∂f (si)
∂αi

, (17)

where ε denotes the objective function (e.g., reconstruction er-
ror). Eq. (17) consists of two gradient terms: the gradient to the
current hashing layer and the derivative of the ATanh function.
The derivative rule for the composite function is employed for
the second term:

∂f (si)
∂αi

=
(
1 − tanh2 (αisi)

)
si − 2λα−3

i . (18)

At this point, we can train the hashing layer with the whole
network by employing a standard SGD optimizer. After train-
ing the multimodal network, the binary hashing codes can be
directly generated in the hashing layer.

C. Non-Linearized ATanh

Although the linearized ATanh can scale the inputs, it still
suffers from the problem of tiny gradients. This is because the
non-binary area (i.e., the transition area) of the tanh function
mainly lies in the interval (−3, 3) on the x-axis. Regardless of
the size of the scaling parameter α, the non-binary area can
only be linearly extended to a limited size, and the external
area remains unchanged. Hence, can we employ a nonlinear
projection to solve this problem?

The nonlinear scaling function should project all the original
inputs into the non-binary area of the tanh function; then, almost
all activations can utilize the gradient passed from the higher
layers. Moreover, the resulting composite function should also
have the ability to generate binary codes. Hence, we propose to
employ the logarithmic function as the scaling function, where
the scaling parameter α is applied as the base:

g(s) = logα (s + 1), α > 1. (19)

Here, we restrict α to be greater than 1. As shown in Fig. 3,
the bottom two figures show different tanh functions scaled by
different logarithms. When α increases, the inputs far away from
the zero point can still use the gradients compared with the linear
scaling method. Similarly, the composite ATanh function should
also approach the sign function after training. In contrast to the
linear ATanh function, the nonlinear ATanh function requires
that α gradually decrease. Hence, we append the l2 norm to the
parameter α; then, Eq. (14) becomes

f (s) = tanh(logα (s+1)) + λ ‖α‖2
2 . (20)

Compared with the linear case, the activations in Eq. (20) have
an offset of 1 due to the property of the logarithmic function.

The optimization of Eq. (20) shares the same procedure as
the linear case. The gradient to the current hashing layer is first
derived based on the chain rule, and then, the derivative w.r.t.
αi in Eq. (20) is derived as follows:

∂f (si)
∂αi

= − [
1 − tanh2 (g (si))

] ln (si + 1)
αi ln2αi

+ 2λαi. (21)

Note that the constraint of α > 1 is implemented via
logα+1 (s + 1) in practice. To this end, we can optimize
the hashing layer based on Eq. (21) within the multimodal
networks.

V. DEEP BINARY RECONSTRUCTION NETWORK

The performance of the MRBM multimodal unit in pre-
serving the intra- and inter-modal consistency has been the-
oretically guaranteed, and it has become possible to directly
generate binary codes after training the networks. Hence, to
integrate the above two contributions for cross-modal hashing,
we propose a novel multimodal Deep Binary Reconstruction
(DBRC) network that can directly project original real-valued,
high-dimensional multimodal data into binary, short hashing
codes, as shown in Fig. 4. Specifically, to capture the unimodal
manifold, multiple layers of nonlinear projections are first em-
ployed for modeling each modality. This modality-specific net-
work can encode the unimodal data into low-dimensional rep-
resentations [21], [49]. Then, the joint representation across the
unimodal representations is learned via the MRBM model (i.e.,
Fig. 1). To binarize the real-valued representation of MRBM,
one hashing layer is appended above the joint representation,
where the element-wise ATanh function is performed over the
activations of the shared layer. Based on the shared hashing
layer across modalities, we attempt to reconstruct the original
modalities. Hence, the overall objective of DBRC becomes

L = ‖x̃ − x‖2
2 + ‖ỹ − y‖2

2 , (22)

where x̃ and ỹ denote the reconstructed modality x and y, re-
spectively. Because the ATanh function is derivable, the whole
network can be trained via back-propagation, and we directly
generate the embedded binary codes.3

Cross-modal hashing attempts to generate binary codes for
each modality and then perform the retrieval by comparing the
codes of different modalities. Since all the modalities are avail-
able in the training phase, we can directly utilize the property
of DBRC to generate identical hashing codes. However, there
is only one modality available in the testing scenario and thus,
the complete structure of DBRC is not suitable. Inspired by
Ngiam et al. [23] and Hu et al. [42], it is possible to reconstruct
both modalities based on only one modality input, which is
named the unimodal reconstruction structure. Because this
structure retains the MRBM model and applies the multimodal
learning in the reconstruction part, is still effective in learning
the joint representation [23], [42]. Concretely, to generate the
hashing codes for a specific modality, we first set the other

3Although the proposed ATanh function is very close to the sign function after
training, very few activations fall into the interval (−1, 1). Hence, we simply
perform binarization over these activations.
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Fig. 4. The proposed deep binary reconstruction network. The joint representation across the two modality-specific networks is adaptively binarized into the
hashing layer by performing the ATanh activation. The whole network is trained to minimize the reconstruction error based on the shared binary representation.

modality to zero; then, we combine these two modalities (ac-
tually, only one modality) as the inputs to the DBRC network.
Eq. (22) is finally applied as the objective to reconstruct both
original modalities. In the testing phase, the hashing codes for
query items can be directly generated by feeding them into the
above network and extracting the outputs of the intermediate
hashing layer. In practice, we find that the pre-trained model
with both available modalities in the training phase provides
better initialization for such reconstruction model, as it captures
the manifold structure of the absent modality. Hence, we choose
to initialize the unimodal reconstruction model from the com-
plete DBRC model and then fine tune it with the unimodal input
data.

Concretely, there are two pathways within the proposed
model: one for the image and one for the text. Each pathway
consists of an encoder and a decoder, where the encoder is
a 3-layer network (n-128-512, n is the dimension of a raw
feature) and the decoder takes on a 512-128-n settings. These
two pathways are connected by the shared layers, whose unit
number is set to the code length. ReLU is selected as the
activation function of the whole network except for the hashing
layer, where the proposed ATanh function is chosen for learning
binary codes. The hyper-parameter of λ is set to 0.001 for all
the datasets. Since both the linear and nonlinear version of
ATanh are derivable, RMSprop is adopted as the optimizer,
which adaptively rescales the step size for the update according
to the gradient history, where the parameters are set as the
learning rate l = 0.001 and the weight decay ρ = 0.9.

VI. EXPERIMENTS

In this section, we focus on the image2text (I2T) and
text2image (T2I) cross-modal hashing task. Two sets of experi-
ments are performed for evaluating the proposed DBRC: one is
an ablation study focusing on the comparison among activation

functions, and the other is a study with other hashing methods.
Different code lengths are also considered.

A. Dataset

Three benchmark datasets, Wiki4 [50], FLICKR-25K5 [51],
and NUS-WIDE6 [52], are chosen for the evaluation.

Wiki is an image-text dataset collected from Wikipedia’s
“featured article”. There are 2,866 pairs in the dataset. For each
pair, the image modality is represented as 128-dimensional SIFT
descriptor histograms, and text is expressed as 10-dimensional
semantic vectors via latent Dirichlet allocation model. These
pairs are annotated with one of 10 topic labels. In this paper, we
choose 25% of the dataset as the query set and the remainder as
the retrieval set.

FLICKR-25K is an image collection from Flickr, where
25,000 images are associated with multiple textual tags (text).
The average number of tags for each image is approximately
5.1 [1]. In addition, these image-tag pairs are annotated by 24
provided labels. Following the setting in [53], we select the tex-
tual tags that appear more than 20 times and retain the valid
pairs. The left images are represented with a 150-dimensional
edge histogram, and the texts are expressed as a 500-dimensional
tagging vector. Here, we take 5% of the dataset as the query set
and the remainder as the training set.

NUS-WIDE dataset consists of 269,648 multi-label images.
Each image is also associated with multiple tags (6 on aver-
age). The image-tag pairs are annotated with 81 concept la-
bels. Among these concepts, the 10 most common concepts are
considered in our experiments. The images are represented as
500-dimensional bag-of-words based on the SIFT descriptor.

4http://www.svcl.ucsd.edu/projects/crossmodal/
5http://press.liacs.nl/mirflickr/
6http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

http://www.svcl.ucsd.edu/projects/crossmodal/
http://press.liacs.nl/mirflickr/
http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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Fig. 5. The comparison results in reducing the quantization error of binariza-
tion, where the quantization error is calculated by binarizing the activations in
the hashing layer after each iteration. Obviously, the proposed DBRC-L and
DBRC-N achieve faster convergence than the DBRC of the raw tanh function.

The textual tags are expressed with a 1000-dimensional tag oc-
currence vector. A total of 4000 image-tag pairs are uniformly
sampled as the query set, and the remaining pairs serve as the
training set.

B. Metric

Two evaluation metrics are adopted, e.g., Hamming rank-
ing and hash lookup. Specifically, Hamming ranking focuses
on the quality of all the retrieved items, while hash lookup
simply addresses the top retrieved items. Hence, different eval-
uation metrics are considered, where Mean Average Precision
(MAP) is computed based on the Hamming distance to a query
for the Hamming ranking, and the retrieved items within a
Hamming ball of radius 2 to the query are evaluated with the
{Precision, F − measure} metrics for the hash lookup. In
addition, the ground truth of relevant items to a query is defined
as whether they have at least one common label.

C. Ablation Study

1) Convergence: The proposed ATanh activation function
attempts to directly generate the binary codes by progressively
approaching the sign function when training the network. Hence,
it is necessary to analyze the approaching speed of such func-
tions. To quantify the convergence, the quantification error is
calculated after each epoch, which is obtained by applying the
sign function over the activations of the current hashing layer.
In addition, the proposed DBRC with linear ATanh (DBRC-L)
and nonlinear ATanh (DBRC-N) is analyzed, and the original
tanh function (DBRC-Raw) is included.

Fig. 5 shows a comparison of the convergence performances
among the DBRCs with different hashing activation functions,

which is applied to the Wiki dataset with 96-bit hashing codes.
In Fig. 5, the nonlinear ATanh enjoys the fastest convergence,
the linear function is the second fastest, and the tanh function is
the slowest. The superior performance of DBRC-N comes from
the efficient regularization term in Eq. (20). Although DBRC-L
also applies a penalty term to α, its magnitude is substantially
smaller than those in DBRC-N. This is because the 2λαi term in
Eq. (21) contributes larger gradients than does 2λα−3

i in Eq. (18)
in regulating α. Moreover, the other elements in both equations
also provide similar contributions. Concretely, these elements
in Eq. (21) and Eq. (18) lie in the opposite directions in regular-
izing the parameter α, and the absolute value of the first term in
Eq. (21) is substantially smaller than the corresponding one in
Eq. (18) in the early stage of the optimization; hence, DBRC-N
achieves faster convergence than DBRC-L. Although the naive
tanh function also reduces the quantization error, it is much
slower than the other functions and has a serious impact on gen-
erating the final binary codes. In addition, we find that DBRC-L
ultimately achieves a lower quantization error than DBRC-N.
Such phenomenon has two causes. On the one hand, the nonlin-
ear scaling function of the logarithm first compresses the inputs
to a lower scope, which allows them to best utilize the non-binary
area of the tanh function. The linear ATanh function fails to apply
such projection; hence, its activations mostly fall into binary val-
ues and take lower quantization errors compared with the non-
linear function, as shown in Fig. 3. On the other hand, along with
the network optimization, the scaling parameter α of DBRC-N
decreases. Hence, the regularization term 2λαi contributes a
smaller gradient in regularizing α, which results in the stranded
quantization error. The following experiments show that such
cases degrade the final performance but still outperform other
methods.

2) Activation Comparison: To validate the effectiveness of
the proposed ATanh function in learning the binary codes, dif-
ferent variants of ATanh are compared. Among these variants,
DBRC-C [54] utilizes a fixed sequence of α for training the net-
work step by step, where the network trained with the previous
α provides better initialization for the training with the next α.
The final α is the largest (linear) or smallest (nonlinear), which
transforms the standard tanh function into an approximated sign
function. In addition, DBRC-P is the same as DBRC but does not
include the regularization term, i.e., Eq. (13). Hence, DBRC and
DBRC-P contain learnable hashing activation functions, while
DBRC-C does not. Both the linear and nonlinear versions of
these variants are considered to provide a thorough comparison.
The experiments are conducted on the Wiki and FLICKR-25K
dataset, and the Hamming ranking is adopted as the evaluation
metric. Different code lengths are also considered.

Table I shows the comparison results among DBRC, DBRC-
C, and DBRC-P, where ‘L’ and ‘N’ denote the linear and non-
linear implementation, respectively. There are three points on
which we should focus. First, DBRC and DBRC-P usually out-
perform DBRC-C in the two tasks. This performance indicates
that the learnable activation function contributes more efficient
codes for the reconstruction model. This is because ATanh can
adaptively learn element-wise binarization functions according
to the low-dimensional shared subspace across modalities.
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TABLE I
THE ABLATION COMPARISON AMONG DIFFERENT VARIANTS OF ATANH, WHICH ARE EXPLOITED IN THE DBRC NETWORK. ALL THE EXPERIMENTS ARE

CONDUCTED ON THE WIKI AND FLICKR-25K DATASETS WITH VARYING CODE LENGTHS, WHERE THE HAMMING RANKING PERFORMANCE (IN MAP) IS

EMPLOYED FOR THE EVALUATION

TABLE II
THE COMPARISON RESULTS OF DIFFERENT CROSS-MODAL METHODS WITH RESPECT TO HAMMING RANKING (MAP). THREE BENCHMARK

DATASETS ARE EMPLOYED FOR THE EVALUATION

Second, DBRC performs better than DBRC-P for both the linear
and nonlinear version. This is because the regularization term is
not used within DBRC-P, which results in the large quantization
error, as the results show in Fig. 5. In addition, direct binarization
over the representation can destroy the learned joint distribu-
tion. Hence, DBRC can learn better hashing codes. Third, the
linear function tends to generate better codes than the nonlinear
function under all variants of DBRC. Although the latter variant
achieves faster convergence while reducing the quantization
error, the converged error still decreases the final performance.

D. Comparison Experiments

In this section, the proposed DBRC is compared with several
unsupervised cross-modal hashing methods; an analysis of the
sensitivity of the hyper-parameter λ is also provided.

1) Compared Methods: The compared methods involve the
linear and nonlinear models, where the linear models are
IMH [29], CVH [26], CMFH (UCMFH) [19], and LSSH [18],
and the nonlinear deep models are Corr-Full-AE [43] and
Deep Multimodal Hashing with Orthogonal Regularization
(DMHOR) [24]. Among these methods, we utilize the source
codes of IMH, CVH, CMFH, and LSSH provided by the au-
thors for comparison, while the remaining two deep models are
carefully implemented by the authors. Corr-Full-AE is a full
version of Corr-AE [43], but the concrete network architec-
ture and optimization method are not provided in the original
paper. For fairness, we employ the same unimodal network
for comparison. Different strategies are employed for the opti-
mization, and the best strategy is selected. Since Corr-Full-AE
suffers from issues of falling into local optima and tends to
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Fig. 6. The hash lookup performance (in terms of Precision and F-measure) of different cross-modal hashing methods on the Wiki, FLICKR-25K, and NUS-
WIDE datasets. Two cross-modal retrieval tasks, I2T and T2I, are applied, and different code lengths are considered. Clearly, our proposed DBRC-L and DBRC-N
almost achieve the top two performances in all comparisons.

learn similar codes for all the data, only the Hamming rank-
ing is adopted for evaluation. For DMHOR, the network and
hyper-parameter settings are well determined and utilized in the
experiments.

2) Experimental Results: In the experiments, we focus on
the image2text and text2image retrieval task. Table II shows
the comparison performance in terms of the Hamming rank-
ing. Four points should be indicated according to the MAP
results. First, the spectral-based models (IMH and CVH) are
comparable to the linear matrix-factorization models (CMFH
and LSSH) on the FLICKR-25K and NUS-WIDE datasets, but
they perform much worse on the Wiki dataset. This situation
may come from the difficulty in capturing the intrinsic manifold
structure of the small size of the Wikipedia data. By contrast, our
proposed DBRC can effectively model and encode the data into
efficient codes. Second, although deep models have a stronger
ability for modeling complex images and text data, Corr-Full-
AE and DMHOR do not outperform the shallow models in
many cases. The primary reason for this is that the shared layers
within these deep models are not fully activated, which results
in an inevitable quantization error. On the other hand, they also
suffer from unbalanced activations [21], which means that the
activation probabilities do not follow a symmetric distribution.
Hence, the directly applied binarization over these activations

results in inefficient codes [55]. Third, our proposed DBRC-L
and DBRC-N perform the best among these methods except in
a few case. This is because DBRC integrates the conventional
two-stage strategy into one step for generating the binary codes;
this unified framework can seek out a better solution than the in-
dividual strategies. Fourth, we can find that DBRC-L achieves a
better MAP score than DBRC-N in most instances. As discussed
in the ablation study, DBRC-N achieves efficient convergence
in generating binary codes but fails to reduce the quantization
error to absolute zero, as shown in Fig. 5. Hence, the additional
binarization has to be considered for the activations, although
DBRC-N still shows a noticeable superiority over other models.

In addition to the Hamming ranking evaluation, the hash
lookup metric is also considered. Fig. 6 shows the comparison
results in terms of Precision and F-measure.7 Although the two
proposed models remain top performers among all the meth-
ods, some other results still should be noted and analyzed. First,
in contrast to the cases of the Hamming ranking, the nonlin-
ear methods outperform the linear methods, especially in terms

7Due to the limited memory of our desktop personal computer, the reported
MAP score of IMH in [22] is adopted, but the hash lookup results are not
supported in [22]; hence, IMH is not considered in the hash lookup evaluation
on the NUS-WIDE dataset.
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Fig. 7. The parameter sensitivity analysis of λ in the ATanh activation function.
The top two figures are the results of DBRC-L, and the bottom two figures are
the results of DBRC-N.

of F-measure. The distinction comes from the different evalua-
tion metrics. Specifically, the Hamming ranking addresses the
whole retrieved sequence, while the hash lookup only focuses on
the top retrieved items within a specific Hamming ball. Hence,
the nonlinear models are skilled at encoding the most discrimi-
native items but tend to mix the remaining items with the items
from other modalities, which is further influenced by the sep-
arated binarization. Second, it is obvious that both the Preci-
sion and F-measure measures are highly influenced by the code
length. The performance of most cross-modal hashing methods
decreases sharply with the growing code length. This is because
the increasing code length results in a sparser Hamming space
when the samples are fixed; it then becomes difficult to capture
the intrinsic structure of the intra- and inter-modalities. How-
ever, the deep models can reduce the substantial negative impact
to some extent, especially the proposed models. For example,
the Precision metric of DBRC-L and DBRC-N remains stable
on the three datasets for the two retrieval tasks, which indicates
that our models can effectively model multiple modalities, even
when faced with sparse encoding spaces. Third, DBRC-L tends
to perform better than DBRC-N in terms of Precision but worse
in terms of F-measure. This situation indicates that DBRC-L can
retrieve more exact items (with high precision), while DBRC-N
can obtain more proper items (with high recall).

3) Parameter Sensitivity: There is one key hyper-parameter
within the ATanh activation function: λ. To evaluate its influ-
ence on the hashing learning, we conduct a parameter analysis
on this parameter. Fig. 7 shows the Hamming ranking perfor-
mance of the two proposed models on the Wiki dataset with 32-
and 64-bit codes. Since λ controls the importance of the reg-
ularization term, it has a significant influence on reducing the

quantization error. The influence of λ is mainly reflected in the
convergence speed but is limited on the differences of the quanti-
zation error. Concretely, when λ increases, DBRC will achieve
faster convergence, and the units in the hashing layer will be
quickly transformed into binary values. In these situations, if
the shared subspace across modalities has not been effectively
learned, the premature binarization with large λ could result in
inefficient hashing codes. Fortunately, the employed end-to-end
DBRC model still possesses a strong ability for modeling com-
plex data distributions under such situations. Hence, we can
find that DBRC-N shows a tolerable decline with increasing
λ, as shown in Fig. 7. By contrast, DBRC-L remains stable to
some extent. This is because the scaling parameter α takes the
negative power in the regularization term of Eq. (17), which
makes the network insensitive to variations in λ. In this paper,
we choose λ = 0.001 for both DBRC-L and DBRC-N in all
cases, thereby providing a proper balance between convergence
speed and model performance.

VII. CONCLUSION

In this paper, we focus on the difficult optimization prob-
lem of cross-modal hashing objectives with binary constraints.
To learn efficient binary codes, the complex correlation across
modalities should first be effectively captured; hence, deep net-
works with strong nonlinear modeling abilities are considered.
A theoretical guarantee is also provided to validate its capacity
in preserving the inter- and intra-modal consistencies. Then, a
deep binary reconstruction network is proposed to directly learn
the binary codes. The superiority comes from a novel shared
hashing layer across unimodal networks, which consists of a
composite activation function that adaptively scales the input
activations into the nonlinear scope of the tanh function. In ad-
dition, linear and nonlinear scaling extensions, which can be
jointly trained with the whole network, are provided in the pa-
per. Extensive experiments are conducted on three benchmark
datasets, the results of which showing that the proposed models
are quite capable of directly producing more efficient binary
codes.
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dictable dual-view hashing,” in Proc. 30th Int. Conf. Mach. Learn., vol. 28,
2013, pp. 1328–1336.

[31] G. Ding, Y. Guo, and J. Zhou, “Collective matrix factorization hashing for
multimodal data,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit.,
2014, pp. 2075–2082.

[32] X. Xu, F. Shen, Y. Yang, and H. T. Shen, “Discriminant cross-
modal hashing,” in Proc. ACM Int. Conf. Multimedia Retrieval, 2016,
pp. 305–308.

[33] T. Zhang and J. Wang, “Collaborative quantization for cross-modal sim-
ilarity search,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit.,
2016, pp. 2036–2045.

[34] K. Ding, B. Fan, C. Huo, S. Xiang, and C. Pan, “Cross-modal hash-
ing via rank-order preserving,” IEEE Trans. Multimedia, vol. 19, no. 3,
pp. 571–585, Mar. 2017.

[35] G. Andrew, R. Arora, J. Bilmes, and K. Livescu, “Deep canonical correla-
tion analysis,” in Proc. 30th Int. Conf. Mach. Learn., 2013, pp. 1247–1255.

[36] Q. Dong, M. Shu, H. Cui, H. Xu, and Z. Hu, “Learning stratified 3D
reconstruction,” Sci. China Inf. Sci., vol. 61, no. 2, 2018, Art. no. 023101.

[37] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time
object detection with region proposal networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2015, pp. 91–99.

[38] A. Graves, A.-R. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., 2013, pp. 6645–6649.

[39] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2014,
pp. 3104–3112.

[40] R. Salakhutdinov and G. Hinton, “Deep Boltzmann machines,” in Proc.
12th Int. Conf. Artif. Intell. Statist., 2009, pp. 448–455.

[41] K. Sohn, W. Shang, and H. Lee, “Improved multimodal deep learning with
variation of information,” in Proc. Adv. Neural Inf. Process. Syst., 2014,
pp. 2141–2149.

[42] D. Hu, X. Lu, and X. Li, “Multimodal learning via exploring deep semantic
similarity,” in Proc. ACM Multimedia Conf., 2016, pp. 342–346.

[43] F. Feng, X. Wang, and R. Li, “Cross-modal retrieval with correspon-
dence autoencoder,” in Proc. 22nd ACM Int. Conf. Multimedia, 2014,
pp. 7–16.

[44] W. Wang, B. C. Ooi, X. Yang, D. Zhang, and Y. Zhuang, “Effective
multi-modal retrieval based on stacked auto-encoders,” in Proc. VLDB
Endowment, 2014, vol. 7, no. 8, pp. 649–660.

[45] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Bi-
narized neural networks: Training deep neural networks with weights and
activations constrained to +1 or –1,” 2016, Preprints, arXiv:1602.02830.

[46] G. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[47] T. Tieleman, “Training restricted Boltzmann machines using approxima-
tions to the likelihood gradient,” in Proc. 25th Int. Conf. Mach. Learn.,
2008, pp. 1064–1071.

[48] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE Trans. Neural Netw., vol. 5, no. 2,
pp. 157–166, Mar. 1994.

[49] T.-T. Do, A.-Z. Doan, and N.-M. Cheung, “Discrete hashing with deep
neural network,” 2015, Preprints, arXiv:1508.07148.

[50] N. Rasiwasia et al., “A new approach to cross-modal multimedia retrieval,”
in Proc. 18th ACM Int. Conf. Multimedia, 2010, pp. 251–260.

[51] M. J. Huiskes and M. S. Lew, “The MIR Flickr retrieval evaluation,” in
Proc. 1st ACM Int. Conf. Multimedia Inf. Retrieval, 2008, pp. 39–43.

[52] T.-S. Chua et al., “NUS-WIDE: A real-world web image database from
National University of Singapore,” in Proc. ACM Int. Conf. Image Video
Retrieval, 2009, Art. no. 48.

[53] Z. Lin, G. Ding, M. Hu, and J. Wang, “Semantics-preserving hashing
for cross-view retrieval,” in Proc. IEEE Conf. Comput. Vision Pattern
Recognit., 2015, pp. 3864–3872.

[54] Z. Cao, M. Long, J. Wang, and P. S. Yu, “HashNet: Deep learning to hash
by continuation,” 2017, Preprints, arXiv:1702.00758.

[55] X. Li, D. Hu, and F. Nie, “Large graph hashing with spectral rotation,” in
Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 2203–2209.

Di Hu is currently working toward the Ph.D. degree
at the Northwestern Polytechnical University, Xi’an,
P. R. China, under the supervision of Feiping Nie and
Xuelong Li.

He has authored or co-authored several papers
in top conferences, such as CVPR, ICCV, AAAI, and
ACM MM. His research interests include multimodal
machine learning and relevant applications, such as
audiovisual understanding, cross-modal retrieval, etc.

Mr. Hu was a PC member for AAAI, CVPR, and
ACCV.



HU et al.: DEEP BINARY RECONSTRUCTION FOR CROSS-MODAL HASHING 985

Feiping Nie (M’17) received the Ph.D. degree in
computer science from Tsinghua University, Beijing,
P. R. China, in 2009.

He is currently a Full Professor with the North-
western Polytechnical University, Xi’an, P. R. China.
He has authored or co-authored more than 100 papers
in the following journals and conferences: TPAMI,
IJCV, TIP, TNNLS, TKDE, ICML, NIPS, KDD, IJ-
CAI, AAAI, ICCV, CVPR, and ACM MM. His pa-
pers have been cited more than 10 000 times and the
H-index is 53. His research interests include machine

learning and its applications, such as pattern recognition, data mining, computer
vision, image processing, and information retrieval.

Dr. Nie is an Associate Editor and a PC member for several prestigious
journals and conferences in the related fields.

Xuelong Li (M’02–SM’07–F’12) is a Full Professor with the School of
Computer Science and Center for OPTical IMagery Analysis and Learning
(OPTIMAL), Northwestern Polytechnical University, Xi’an, China. He was
with the Xi’an Institute of Optics and Precision Mechanics, Chinese Academy
of Sciences, Xi’an.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


