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1 More experimental results

Apart from the evaluation based on Hamming distance metric, we also provide the Preci-
sion@top100 indicator. Table 1 and Table 2 show the comparison results in Precision@top100
on the three datasets. Compared with other methods, DLDAH achieves superior performance. To
be specific, there are three points we should pay attention to. First, LDAH performs much worse
than conventional supervised methods, even some unsupervised ones, e.g., ITQ. This is because
the simple linear projection of LDA is not entirely suitable to deal with such highly complex deep
features. However, the proposed DLDAH enjoys extremely noticeable improvement of about 50-70
points. Such performance comes from the efficient LDA supervision for training the whole network
in the end-to-end fashion. Second, the deep model with triplet loss (i.e., DTSH) performs better than
the pairwise one (i.e., DHN) in MAP, but worse in Precision@top100. Such phenomenon could be
because the triplet loss pays more attention in distinguishing different categories but fails to shrink
the intra-category covariance, while the pair loss takes the opposite way. But DLDAH takes both
advantages and shows the best scores on both metrics. Third, DSDH almost shows decent perfor-
mance, as it combines the pairwise supervision and the original one-hot supervision. In fact, the
pairwise label comes from the one-hot label, which means the two-stream supervision is redundan-
cy, meanwhile, such network requires complex alternating optimization. In contrast, DLDAH can
be integrally trained by off-the-shelf SGD optimizer, therefore shows better performance.

Table 1: The comparison results of different hashing methods in Precision@top100 on MNIST and
ImageNet.

Dataset MNIST ImgaeNet
#bits 8 16 24 32 64 128 8 16 32 48
LSH 0.1798 0.3555 0.4143 0.4840 0.6910 0.7915 0.0289 0.0623 0.1371 0.2293
SH 0.4382 0.6419 0.6942 0.7285 0.7666 0.7938 0.0728 0.2090 0.3321 0.3974
ITQ 0.5671 0.7177 0.7805 0.8190 0.8571 0.8824 0.0876 0.2767 0.4375 0.4993

LDAH 0.5917 0.5905 0.5488 0.5053 0.4278 0.4107 0.0591 0.1767 0.3406 0.4352
SDH 0.4853 0.6963 0.7603 0.8061 0.8539 0.9080 0.1223 0.4280 0.5353 0.5717

FSDH N/A 0.7372 0.7113 0.7372 0.7113 0.7372 N/A N/A N/A N/A
DHN 0.7932 0.9320 0.9623 0.9662 0.9754 0.9850 0.1062 0.4355 0.5693 0.5996

HashNet 0.6873 0.9398 0.9689 0.9736 0.9791 0.9852 0.1042 0.4538 0.5767 0.6158
DTSH 0.8615 0.8997 0.9014 0.9224 0.9568 0.9808 0.1287 0.3817 0.5230 0.5548
DSDH 0.9082 0.9478 0.9309 0.9454 0.9810 0.9834 0.1362 0.3917 0.5238 0.5818

DLDAH 0.9314 0.9714 0.9800 0.9826 0.9867 0.9860 0.1592 0.4548 0.5964 0.6635

Preprint. Work in progress.



Table 2: The comparison results of different hashing methods in Precision@top100 on CIFAR-10.

Dataset CIFAR-10
Code #bits 8 16 24 32 64 128

LSH 0.1201 0.1964 0.2114 0.2702 0.3076 0.4018
SH 0.2300 0.3366 0.3571 0.3699 0.4021 0.4392
ITQ 0.2649 0.3939 0.4161 0.4385 0.5031 0.5349

LDAH 0.1926 0.2094 0.1937 0.1789 0.1695 0.1608
SDH 0.2461 0.2864 0.3212 0.3466 0.3867 0.5327

FSDH N/A 0.3072 0.3060 0.3072 0.3072 0.3072
DHN 0.2341 0.5187 0.6813 0.7330 0.7552 0.7785

HashNet 0.2482 0.5270 0.6909 0.7322 0.7695 0.7873
DTSH 0.4076 0.6217 0.6772 0.6953 0.6792 0.4573
DSDH 0.4044 0.6305 0.6643 0.6870 0.6849 0.7197

DLDAH 0.4632 0.6329 0.7167 0.7580 0.7740 0.8252

2 Proof of Theorem 1

Theorem 1. Maximizing the LDA objective over deep features is equivalent to minimizing the linear
least square error, i.e.,
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By substituting Eq.7 into Eq.5, we can have
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]
+ Tr

(
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is constant, the original minimization problem is transformed into a

maximization objective of LDA,
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This completes our proof.
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