
Temporal Multimodal Learning in Audiovisual Speech Recognition

Di Hu∗, Xuelong Li†, Xiaoqiang Lu†

∗School of Computer Science and Center for OPTical IMagery Analysis and Learning (OPTIMAL),
Northwestern Polytechnical University, Xi’an 710072, P. R. China

†Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences,
Xi’an 710119, P. R. China

hdui831@mail.nwpu.edu.cn, xuelong li@opt.ac.cn, luxiaoqiang@opt.ac.cn

Abstract

In view of the advantages of deep networks in produc-
ing useful representation, the generated features of different
modality data (such as image, audio) can be jointly learned
using Multimodal Restricted Boltzmann Machines (MRB-
M). Recently, audiovisual speech recognition based the M-
RBM has attracted much attention, and the MRBM shows
its effectiveness in learning the joint representation across
audiovisual modalities. However, the built networks have
weakness in modeling the multimodal sequence which is the
natural property of speech signal. In this paper, we will
introduce a novel temporal multimodal deep learning ar-
chitecture, named as Recurrent Temporal Multimodal RB-
M (RTMRBM), that models multimodal sequences by trans-
forming the sequence of connected MRBMs into a proba-
bilistic series model. Compared with existing multimodal
networks, it’s simple and efficient in learning temporal join-
t representation. We evaluate our model on audiovisual
speech datasets, two public (AVLetters and AVLetters2) and
one self-build. The experimental results demonstrate that
our approach can obviously improve the accuracy of recog-
nition compared with standard MRBM and the temporal
model based on conditional RBM. In addition, RTMRBM
still outperforms non-temporal multimodal deep networks
in the presence of the weakness of long-term dependencies.

1. Introduction

Robust Automatic Speech Recognition (ASR) has been
the key to the natural human-computer interfaces in most
cases, but it’s challenged by the noisy environments. One
example of such an environment is street, where the traf-
fic noise makes it very hard for recognizing the speech.
Considering that vision is free of audio noise and can pro-
vide complemental information to audio in the noisy condi-
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Figure 1: The sequence of audio and visual frames, where
the joint representation across audiovisual modalities in cur-
rent frame depends on the former. This directed graphical
model is proposed to model temporal multimodal sequences
in this paper.

tion [10], even clean environment, researchers have paid at-
tention to the Audiovisual Speech Recognition (AVSR) that
makes use of the information from both audio and visual
modalities. And the proposed several types of AVSR mod-
els have shown that they indeed have certain improvement
over the ASR based on only audio [1, 10, 13].

In the past decades of years, several approaches have
been proposed to fuse the speech information from the au-
dio and visual modalities [5, 6, 14]. However, on account
of the different statistical properties between the modali-
ties [20], it’s difficult to capture patterns across them. Re-
cent works on deep learning [9, 16, 17] have verified the
efficiency of deep networks in producing useful represen-
tations for various kinds of data, such as image, audio and
text. It can be expected to explore the highly correlated
representation across modalities after learning each channel
data with single deep network. Based on this, multimodal
deep networks have been proposed to jointly learn the gen-
erated features of different modalities and obtained state-of-



the-art performance [19, 20]. But many tasks are inherently
sequential. For example, each utterance is an ordered se-
quence of phonemes or visemes (motions of mouth lips) in
the AVSR, where the latter is influenced by the former. And
the built multimodal networks almost fail to model the tem-
poral multimodal data, which ignore the correlation among
the components of the utterance.

In this paper, we propose a novel temporal multimodal
network to model audiovisual sequence in an unsupervised
fashion, which we refer to as the Recurrent Temporal Mul-
timodal Restricted Boltzmann Machine (RTMRBM). Fig-
ure 1 shows a simple illustration of the proposed model. In
each frame (time slice), the mouth lip and sound spectro-
gram are jointly learned using multimodal networks. The
learned joint representations across modalities at differen-
t frames are directly connected from start to end, which
makes the current frame learned based on previous one.
In general, the proposed model has three advantages in the
AVSR. First, it has the ability to extract semantic informa-
tion from each modality data and learn the joint representa-
tion across audiovisual modalities. Second, it is a directed
graphical model that can model temporal audiovisual se-
quences well as the joint representations among all frames
are dependent. Third, the simple connection among the se-
quence of frames makes it easy to train as well as the stan-
dard MRBM. We evaluate our model on three audiovisu-
al speech datasets, two public (AVLetters and AVLetters2)
and one self-build (AVDigits). Our experiment results veri-
fy that the proposed model can learn better joint representa-
tion than non-temporal multimodal networks and temporal
network based on Conditional RBM (CRBM). In addition,
compared with typical multimodal network, RTMRBM can
still performs well when faced with the weakness of long-
term dependencies.

In the following sections, we first survey the related
works about AVSR in Section 2. In Section 3, we review
the representative multimodal model, then we develop the
proposed RTMRBM, and introduce the inference as well as
learning algorithm in it. Section 4 conducts different sets of
experiments for evaluating the model on the three datasets,
and corresponding results are reported and discussed. Sec-
tion 5 concludes this paper.

2. Related Work
Classic AVSR Systems. AVSR has been studied in a few
years, amounts of work about it can be roughly grouped in-
to two categories: feature fusion and decision fusion [14].
The former aims to classify the concatenation of audio and
visual features with a single classifier, but it has the weak-
ness of separating out the noisy features. And the latter
fuses the class-conditional probabilities of two classifiers
with appropriate weights that depend on the contribution of
each modality, such as multi-stream Hidden Markov Mod-

els (HMMs). However, The classic AVSR method based
on multi-stream HMMs does not generalize very well be-
cause the weights that vary with time are hard to estimate.
More importantly, both feature fusion and decision fusion
have weakness in building a connection between audio and
visual modalities at the level of semantics, where they are
considered highly correlated [19].
AVSR based on Deep Learning. In recent years, deep
learning methods have performed its effectiveness in gen-
erating useful feature representation. Most of the gener-
ated features from different kinds of data are considered
as semantic correlated [20]. For the AVSR task, Ngiam
et al. [13] proposed a kind of multimodal deep network-
s, Multimodal Deep Autoencoder (MDAE), which learns
the layers of modality-specific network that consists stacks
of RBMs firstly. Then, the joint representations across the
generated features of audiovisual modalities are learned us-
ing Multimodal RBM (MRBM). Besides, the pre-trained M-
DAE is fine-tuned to minimize reconstruction errors of both
modalities. Huang and Kingsbury [10] combined two Deep
Belief Networks (DBNs) with the MRBM, and each DBN is
used to model one type of modality. The organized Multi-
modal DBN (MDBN) has shown to outperform the accuracy
of recognition by multi-stream HMMs. Similar framework-
s have also been served to other tasks, such as multimodal
retrieval [20]. MRBM has shown its ability in fusing the
audio and visual modalities into a joint representation in the
aforementioned networks. But the temporal information is
not considered, which apparently deviates from the natural
property of audiovisual speech signal. Recently, Amer et
al. [1] attempted to model the audiovisual sequences for the
first time. They made use of CRBM [25] to model each
modality sequence in the task of AVSR, which made the
modality-specific network sequence connected. Then the
joint representation across modalities was generated. But,
the multimodal network based on CRBM makes the MRB-
M complex, and it’s difficult to learn the joint representation
across multiple modalities because there’re full connectiv-
ity among all the pairs of single modality layer and shared
hidden layer [12].

3. The Proposed Model
In this work, our proposed model aims at fusing the tem-

poral audio and visual representations into a joint repre-
sentation sequence. In the following subsections, we first
briefly review the MRBM model which is used to learn the
joint representation across modalities. Then we introduce
the RTMRBM model and explain the inference and learn-
ing procedure in it.

3.1. Multimodal Restricted Boltzmann Machine

The RBM is an undirected graphical model that defines
a probability distribution of visible units using hidden unit-
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Figure 2: An illustration of the MRBM over audio and vi-
sual modality.

s [18]. Under the case of the multimodal input (we will
take audiovisual inputs as an example), MRBM (Figure 2)
defines the joint distribution over audio modality a, visual
modality v, and shared hidden units h [19],

P (a, v, h) =
1

Z
exp (−E (a, v, h)) , (1)

where Z is the partition function and E is an energy func-
tion given by

E (a, v, h) = −aT Wah − vT Wvh

− aT ba − vT bv − hT bh,
(2)

where a and v are the binary visible units of audio and vi-
sual input, and h is the binary shared hidden units. Wa is
a matrix of pairwise weights between elements of a and h,
and similar for Wv. ba, bv, bh are bias vectors for a, v, and
h, respectively. To obtain the joint likelihood P (a, v), h is
marginalized out from the distribution,

P (a, v) =
∑

h

exp(−E(a, v, h))/Z. (3)

For the MRBM model, similar to the standard RB-
M, Contrastive Divergence (CD) [8, 23] or Persistent CD
(PCD) [26] is used to approximate the gradient to maximize
the joint likelihood, i.e., P (a, v). This is the typical maxi-
mum likelihood learning for MRBM. Finally, the learned
shared hidden units h is treated as the joint representation
across modalities.

3.2. Temporal Multimodal Learning

Although MRBM is good at learning the joint repre-
sentation across modalities, it fails to capture the temporal
information about the multimodal sequence, especially in
AVSR. Specifically, the audio inputs of MDAE or MDBN
are the concatenation of several frames of audio spectro-
gram, similarly for visual modality. These frames are only
a part of each utterance representing phonemes or visemes,

which ignores the continuity of all the frames that belong
to the utterance. In addition, the joint representations ob-
tained from multimodal networks are directly concatenat-
ed without considering the interaction and influence among
them. To overcome the aforementioned problems, audio-
visual representations should be viewed as sequence and
modeled by temporal multimodal networks.

To model the audio and visual representation sequences
simultaneously, it’s intuitive to organize a sequence of M-
RBMs. The joint representations are considered to be con-
nected among MRBMs, where the latter representations are
dependent on the former. It’s more credible than the gen-
erated representation of single modality [13], which can
provide complement information for each modality. Re-
searchers have also verified that merged information is more
useful than the summation of single channel [21] in the field
of cognitive science. In addition, the simple connections a-
mong MRBMs can identify the dependency correlation be-
tween joint and audiovisual layers, which means it can learn
useful representation across modalities.

In fact, the organized network is a modification of Tem-
poral RBM (TRBM) [24] which consists of a sequence of
RBMs, where the hidden layer of current RBM depends on
the previous RBMs. Although the TRBM has shown its ef-
fectiveness in modeling unimodal data, such as a sequence
of bouncing ball or motion captures, it can not deal with the
multimodal data.

3.3. Recurrent Temporal Multimodal RBM

The proposed RTMRBM models sequences of audio rep-
resentation {at}Tt=1, video representation {vt}Tt=1, where
at ∈ {0, 1}Na , vt ∈ {0, 1}Nv , t is the time step and T is
the sequence length. Figure 3 shows an illustration of the
RTMRBM network. Specifically, the audio and visual rep-
resentation {at, vt} form the aforementioned MRBM with
the shared hidden units ht ∈ {0, 1}Nh at time step t. Actu-
ally, it’s hard to infer the shared hidden units ht depended
on former ht−1 exactly when the hidden layers of MRBMs
are connected, because the required exact ratio of two M-
RBM partition functions is hard to evaluate [24]. Inspired
by the recurrent TRBM [22], through making the connec-
tion between visual layer and the hidden layer directed and
using mean-field update instead, exact inference becomes
easy. Therefore, as described in Figure 3, we add the joint
layers {Jt}Tt=1 on the top of MRBMs, which connects the
sequence of MRBMs, where Jt ∈ RNh .

The joint distribution over at, vt, and ht given the previ-
ous joint units Jt−1 at time t is defined by the equation

P (at, vt, ht|Jt−1) =
1

ZJt−1

exp (−E (at, vt, ht|Jt−1)) ,

(4)
where ZJt−1 is the partition function that depends on Jt−1,
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Figure 3: The structure of the RTMRBM network.

E is the energy function of the MRBM given by

E (at, vt, ht|Jt−1) = −aTt Waht − vTt Wvht

−aT
t ba − vTt bv − hT

t bh

−hT
t UJt−1

= E (at, vt,ht)− hT
t UJt−1,

(5)

where model parameters
{

Wa,Wv, ba, bv, bh
}

are the ma-
trixes of connection weights and biases for layers as in E-
q.2. As for the matrix U ∈ RNJ×NJ , it’s about the pairwise
weights of Jt−1 and Jt, which is the only difference com-
pared with MRBM. When t = 1, binit is treated as the
input instead of term (bh + UJt−1). Obviously, the energy
function in Eq.5 consists of the energy of standard MRBM
(Eq.2) and the term based on former joint units Jt−1, which
makes the RTMRBM model the multimodal sequence.

The mean-field value Jt is utilized to make the exact in-
ference easier [12], which is essentially the expected val-
ue of ht given the audio and visual representation {at, vt}.
Therefore, the sequence {Jt}Tt=1 is treated as the learned
joint representation, and that is obtained as follows,

Jt = σ
(
aTt Wa + vTt Wv + bh + UJt−1

)
, (6)

where σ (·) is the element-wise logistic sigmoid function.
When t = 1, binit is used as before. Note that, Eq.6
makes the connected MRBM sequence into a kind of Re-
current Neural Network (RNN), where joint units Jt is time-
dependent.

Given the former joint units Jt−1, it’s easy to obtain
the joint probability over audio and visual representation
{at, vt} by marginalizing out the hidden units ht,

P (at, vt|Jt−1) =
∑

ht

exp (−E (at, vt,ht|Jt−1))
/
ZJt−1 .

(7)

Based on the joint probability at time t, the joint probabil-
ity over two sequences of audio and visual representation
satisfies (see [12, 22] for more about the second equation),

F = logP
(
{at}Tt=1, {vt}Tt=1

)
=

T∑
t=1

logP (at, vt|Jt−1).
(8)

To model the audiovisual sequences, we’d like to maximize
the joint likelihood F .

3.4. Inference and Learning in RTMRBM

Inference in RTMRBM is achieved by giving previous
joint units Jt−1 and calculating the activation state of shared
hidden layer ht when at and vt are fixed. Specifically, using
the advantage of conditional independence in RBM, each
unit in the shared hidden layer ht is activated with the prob-
ability,

P (htk = 1|at, vt, Jt−1)

= σ
(
aTt Wa

·k + vT
t Wv

·k + bh
k + Uk·Jt−1

)
.

(9)

Given joint representation sequence {Jt}Tt=1, the RTMRB-
M is decoupled into a sequence of MRBMs, and CD or PCD
can be used for learning. Therefore, inferring the audiovi-
sual representation {at, vt} is also required.

For the representation layers {at, vt} which both connect
to the shared hidden layer ht, when ht is observed, they
cannot affect each other. Hence, the conditional distribution
of units in at and vt take the form as follows,

P (ati = 1|vt, ht, Jt−1) = σ (Wa
i·ht + ba

i ) , (10)

P
(
vtj = 1|vt, ht, Jt−1

)
= σ

(
Wv

j·ht + bv
j

)
. (11)



Compared with standard MRBM, the inference in RTM-
RBM is performed similarly except the joint units. The joint
units come from previous time t− 1 have impact on the ac-
tivation of shared hidden units and audiovisual representa-
tion (indirectly) at time t. In other words, given Jt−1, the
learning of current MRBM depends on shared audiovisu-
al representation and previous sequence, which makes the
MRBM time-dependent.

Learning in the proposed model RTMRBM is per-
formed by learning model parameters {Wa,Wv, ba, bv}
and

{
U, bh, binit

}
. The former relates to standard MRB-

M, which we will focus on. The latter is related to joint
units Jt and can be learned using the same learning rules as
RTRBM [22], which is based on Backpropagation Through
Time (BPTT) algorithm [15].

Similar with MRBM, parameters {Wa,Wv, ba, bv} can
be learned based on CD approximation but time-dependent.
Specifically, ba and bv are learned as follows,

ba := ba + α

T∑
t=1

(EPdata
[at]− EPrecon [at]) , (12)

bv := bv + α
T∑

t=1

(EPdata
[vt]− EPrecon [vt]) , (13)

where α is a learning rate, EPdata
is the data-dependent

expectation, and EPrecon is the data-reconstruction’s ex-
pectation but depends on the joint representation sequence
{Jt}T−1

t=1 .
Wa and Wv of F are updated using gradient ascent

which consists of two terms, one is about inferring the joint
representation Jt given audiovisual representation {at, vt},
the other one relates to MRBM at time t given previous joint
representation Jt−1,

∆WaF =
T−1∑
t=1

at

(
∆Jt+1

F ⊙ Jt ⊙ (1 − Jt)
)T

+

T∑
t=1

∆Wa logP (at, vt|Jt−1),

(14)

∆WvF =
T−1∑
t=1

vt
(
∆Jt+1

F ⊙ Jt ⊙ (1 − Jt)
)T

+
T∑

t=1

∆Wv logP (at, vt|Jt−1),

(15)

where ⊙ denotes element-wise product. Note that the sec-
ond term in Eq.14 is the summation over the negative gra-
dient of MRBM at time t with regard to Wa, which is
computed as the standard MRBM using CD approxima-
tion

(
EPdata

[
athT

t

]
− EPrecon

[
athT

t

])
, and similarly for

the weight matrix Wv of visual modality (Eq.15). The term
∆Jt+1

F in both Eq.14 and Eq.15 takes the form

∆JtF = UT
(
Jt+1 ⊙ (1 − Jt+1)⊙∆Jt+1

F
)

+UT∆bh logP (at, vt|Jt−1) .
(16)

∆JtF is computed recursively, and JT+1 = 0. The term
∆bh logP (at, vt|Jt−1) is also computed with CD approxi-
mation. We summarize the learning procedure in Algorithm
1.

Algorithm 1 Learning in RTMRBM

Input: Audio representation {at}Tt=1, Visual representation
{vt}Tt=1, CD steps K, number of iteration N .
Output: Model parameters

{
Wa,Wv, ba,bv,bh,binit

}
.

1: Initialize model parameters.
2: Compute the joint representation sequence {Jt}Tt=1 us-

ing Eq.6.
3: Run a Gibbs chain for K steps for each MRBM given

Jt−1 at time step t, the sampling probability for bt, at,
and vt follows Eq.9, Eq.10, and Eq.11, respectively.

4: Update the bias of audio and visual layers {ba, bv}
follows the Eq.12 and Eq.13. The pairwise matrixes
Wa and Wv are updated according to the rules Wa :=
Wa+α∆WaF and Wv := Wv+α∆WvF , respectively.

5: Update
{

U, bh, binit

}
using the learning rules of

RTRBM [22].
6: Repeat above 2-5 steps until convergence or N steps

4. Experiments
In this section, we show the results of RTMRBM com-

pared with other models on three datasets, including M-
DAE, MDBN, and CRBM. Different Signal Noisy Ratio (S-
NR) are also added to audio signal for evaluating the perfor-
mance. In addition, we analyze the impact of the joint-joint
weight matrix U on sub-sequence when modeling the whole
multimodal sequence.

4.1. Datasets

Experiments are conducted on three datasets, two public
datasets: AVLetters [11], AVLetters2 [6], and one self-build
dataset: AVDigits. The AVDigits dataset is built to exam-
ine the performance of RTMRBM, which contains different
semantic information compared with the other two.
AVLetters contains 10 speakers speaking the letters A to Z
at three times each. This dataset provides pre-extracted lip
regions of 60 × 80 pixels and audio features (raw audio is
not provided) Mel-Frequency Cepstrum Coefficient (MFC-
C). Similar with [1], the training set of this dataset contains
the first two times of each letter spoken by each speaker,



and the rest is for the test set. Hence, the training set and
testing set both contain the same set of speakers, which is
speaker dependent.
AVLetters2 is a high-definition of AVLetters. It’s about
reading letters from A to Z, spoke by five people, seven
times for each letter. Similar with [6], letters spoken by four
people are for training and the rest one is for testing. This
is different from previous train/test split, which is speaker
independent.
AVDigits is a self-build dataset, which is about speaking
digits. We ask 6 people to face the camera and speak digits
0 to 9 at nine times each. All videos are recorded in full-
frontal pose, and all subjects are required to keep their head-
s fixed as far as possible. Speakers are also asked to close
their mouth at the begin and end when speaking prepared
digits. The recording video devices is SONY cx290, the vi-
sual modality of each utterance is digitized in 1920× 1080
at 25fps, and audio is recorded at 48kHz, 16-bit resolution.
Letters spoken by four people are exploited to train and the
rest two are exploited to test, which is also speaker indepen-
dent.

4.2. Data Preprocessing

The audio and visual data are separated and prepro-
cessed, respectively. For audio signal, spectrogram (MFCC
instead in AVLetters) is extracted with 20ms hamming win-
dow and 10ms overlap. The frequency points of Discrete
Fourier Transforms are 500, which results in 251 dimen-
sion vector of the signal window. The obtained spectral
coefficient vector is reduced to 50 dimensions using PCA
whitening.

For visual signal, cascade object detector [27] is used to
extract the Region-of-Interest that encompasses the mouth.
The extracted region is rescaled to 60 × 80 pixels and re-
duced to 100 principal components using PCA whitening as
well. We use 4 contiguous audio frames and 1 video frames
as the inputs for each time step simultaneously, which are
almost the same duration.

4.3. Implementation Details

As Deep Auto-encoder (DAE) can be used to obtain the
efficient binary codes for both audio and visual informa-
tion [7, 9], the audiovisual representations are pre-extracted
using modality-specific DAEs. In addition, lots of experi-
ments have verified that pretraining method can indeed af-
fect the performance of RNN [4]. We find that the initial-
ized Wa, Wv, ba, bv , and bh from MDAE can capture more
shared information across audiovisual modalities. The pair-
wise weight U and initial value binit can be initialized to
small random value.

For the task of AVSR, the joint representation generat-
ed from the RTMRBM is treated as the audiovisual fusion,
which can be learned in an unsupervised manner. Since

each speaking example has varying duration, we divided
the fusion result into 1 and 3 equal slices, similar to [13].
Each slice consists of several audio and visual frames, and
mean-pooling is performed over them. Then, the obtained
features of each slice are concatenated and classified using
a linear SVM.

4.4. Results

To evaluate the joint representation learned by our pro-
posed RTMRBM model, we conduct sets of experiments on
both unimodal and multimodal data, i.e. audio modality, vi-
sual modality, and both of them. For the unimodal fashion,
we present only one modality and set the other one to be
zero during the learning procedure.

4.4.1 Speaker Dependent

In the speaker dependent experiments, we compare RTM-
RBM with the performance of several methods on AVLet-
ters, which includes prior methods based on hand-craft fea-
tures and multimodal deep networks. Table.1 shows the
comparison results of mean accuracy over all the letters.
For the three kinds of modalities, RTMRBM outperforms
all the others. In contrast, HMM is also trained to mod-
el temporal sequence with 3DCNN, but RTMRBM deals
with the visual data simpler and learns better joint represen-
tation. In addition, RTMRBM has an improvement com-
pared with non-temporal multimodal deep networks MDAE
that is based on MRBM, which means our proposed mod-
el learns better feature representation through capturing the
temporal information. Note that, for the audiovisual modal-
ities, CRBM makes the modality-specific network connect-
ed instead of the joint representation which can capture bet-

Modality Model mean
Accuracy

A
MDAE [13] 58.40
CRBM [1] 61.2
RTMRBM 64.41

V

Multiscale Spatial Analysis [11] 44.6
Local Binary Pattern [29] 58.85

3DCNN-HMM [28] 59.6
MDAE [13] 62.10
CRBM [1] 62.60
RTMRBM 64.63

AV
MDAE [13] 62.90
CRBM [1] 64.8
RTMRBM 66.04

Table 1: The mean accuracy of speech classification on
AVLetters, RTMRBM and other models are evaluated with
single audio/visual modality and both of them.



Dataset Model Modality SNR Clean-4dB 4dB 6dB 10dB 12dB

AVLetters2

AAM [2] V 15.2 15.2 15.2 15.2 15.2 15.2

RTMRBM
V 31.21 31.21 31.21 31.21 31.21 31.21
A 42.25 57.01 58.04 62.31 67.71 75.85

AV 56.66 64.20 63.02 66.80 69.66 74.77
MDAE [13] AV 49.61 60.22 62.21 64.13 66.31 67.89
MDBN [10] AV 43.57 44.12 46.87 47.52 49.07 54.10

AVDigits
RTMRBM

V 40.66 40.66 40.66 40.66 40.66 40.66
A 43.50 54.09 57.67 62.02 64.42 71.02

AV 55.36 61.52 62.02 64.11 67.64 71.77
MDAE [13] AV 51.57 58.96 59.52 61.63 64.52 66.74
MDBN [10] AV 49.44 50.00 52.78 53.33 54.44 55.00

Table 2: Speech classification performance on AVLetters2 and AVDigits. The results show that, the RTMRBM performs
better than MDAE and MDBN under the conditions of different degrees of SNR to the audio signal, also almost better than
single modality.

ter features across modalities, therefore it’s hard for CRBM
to learn better joint representation based on previous one.
These classification results show the efficient of RTMRBM
in generating feature representation on both single modality
and multi-modalities.

4.4.2 Speaker Independent

In the speaker independent experiments, we compare RTM-
RBM mainly with MDAE and MDBN models on AVLetter-
s2 and AVDigits. To evaluate our proposed model at differ-
ent levels of audio noise, we add the white Gaussian noise
from -4dB to 12dB SNR to the original clean signal. Ta-
ble.2 shows the comparison among modalities and models.
There’re three points we should pay attention to. First, on
the AVLetters2 dataset, we make a contrast with Active Ap-
pearence Model (AAM) [2] on the visual modality, which
learns a mean face template, but it’s sensitive to the specific
training speakers. The results show that modeling sequence
with RTMRBM lower the degree of sensitivity to some ex-
tent. Second, on both datasets, we indeed improve the mean
accuracy at different levels of SNR by learning both audio
and visual modalities instead of one of them. Especially,
when audio SNR becomes lower, the accuracy of audiovi-
sual modality has a significant improvement compared with
single modality, which ensures the learned joint representa-
tion sequence has more discriminative and robust features.
We also note that the audiovisual modality performs worse
than single audio information in the situation of clean audio
signal. This is because the visual modality lower the per-
formance, which is a common situation [13]. Third, com-
pared with the other multimodal deep networks (MDAE and
MDBN), RTMRBM performs better on both datasets. This
shows that modeling the multimodal sequences indeed cap-

ture temporal information and therefore make the model
learn better feature representation across modalities.

4.5. Additional Contrast Experiment

As the RTMRBM is essentially a RNN, it’s challenged
by the long-term dependencies [3]. In this experiment,
through examining the effectiveness of the proposed mod-
el on sub-sequence when modeling the whole audiovisual
modalities sequence, we explore the degree of influence.
Specifically, the RTMRBM is trained with the whole se-
quence of speaking examples, but the generated joint repre-
sentation is equally divided into three parts, former, middle
and latter. Feature representation in each part are trained
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Figure 4: The contrast among the improved mean accura-
cy of three parts (former, middle, and latter) of utterances,
compared with MDAE on AVDigits and AVLetters2.



and classified with a linear SVM. And then we make a
comparison with MDAE which is treated as the same fash-
ion. Figure 4 shows the improved mean accuracy of each
part compared with MDAE on AVDigits and AVLetters2.
The results shows that RTMRBM learns better feature rep-
resentation on all the three sequences compared with M-
DAE, but they have different degree of improvement. On
both datasets, the former part of sequence is enhanced more
than the latter, which ensures that RTMRBM indeed has
difficulty in tackling the long-term dependencies. Howev-
er, through modeling the multimodal sequence, the tempo-
ral information plays an important role in learning the joint
representation. RTMRBM can still learn better joint feature
representation on the latter part than non-temporal multi-
modal network.

5. Conclusion

We have proposed a new architecture RTMRBM for
modeling temporal multimodal sequences, which makes the
sets of MRBMs model the temporal multimodal data well
because the previous robust joint representation is provided
for the learning of current MRBM. Meanwhile, the simple
connection makes the model easy to train. Our experimen-
tal results show that the proposed model can learn temporal
joint representation across multiple modalities in the task of
AVSR, even when the different levels of audio noise exist.
In addition, although the model is truly affected by joint-
joint weight matrix in the long-term dependency, it also per-
forms better than non-temporal multmodal networks, which
verifies the importance of temporal information and its ef-
fectiveness. In the future, we plan to apply the RTMRBM
in other temporal multimodal tasks and attempt to reduce
the difficulties in learning long-term multimodal sequences.
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